Ejemplo n.º 1
0
        def testTopKSum(self):
            d = 10
            c = 10000
            r = 20
            h = d

            a = TopHCS(h, d, c, r, **self.csvecArgs) 
            b = TopHCS(h, d, c, r, **self.csvecArgs) 
            zerosHalf = torch.zeros(d//2, dtype=torch.float, device=self.device) 
            vec = torch.cat((torch.randn(d//2, device=self.device), zerosHalf), 0)
            vec2 = torch.cat((zerosHalf, torch.randn(d//2, device=self.device)), 0)
            a.store(vec)
            b.store(vec2)

            result = TopHCS.topKSum([a, b], d) 
            expected = vec + vec2
            self.assertTrue(torch.equal(expected, result))
Ejemplo n.º 2
0
        def testTopKSum2(self):
            d = 10
            c = 10000
            r = 20
            h = d

            a = TopHCS(h, d, c, r, **self.csvecArgs) 
            b = TopHCS(h, d, c, r, **self.csvecArgs) 
            c = TopHCS(h, d, c, r, **self.csvecArgs) 
            vec = torch.randn(d, device=self.device)
            vec2 = torch.randn(d, device=self.device)
            vec3 = torch.randn(d, device=self.device)
            a.store(vec)
            b.store(vec2)
            c.store(vec3)

            result = TopHCS.topKSum([a, b, c], d) 
            expected = vec + vec2 + vec3
            self.assertTrue(torch.equal(expected, result))
Ejemplo n.º 3
0
                w_2 = TopHCS(d=d,
                             c=c,
                             r=r,
                             h=h_curr,
                             numBlocks=numBlocks,
                             device=device)
                w_2.store(vecs[2])

                print(w_0.topH)
                print("")
                w_3 = TopHCS(d=d,
                             c=c,
                             r=r,
                             h=h_curr,
                             numBlocks=numBlocks,
                             device=device)
                w_3.store(vecs[3])

                print(w_0.topH)
                print("")
                workers = [w_0, w_1, w_2, w_3]
                result = TopHCS.topKSum(workers, k)

                #topHCS_accuracy = (expected == result).nonzero().numel() / k
                #print("num of non 0 elements in topH result : ", result[expectedIndices].nonzero().numel())
                topHCS_accuracy[
                    h_i, k_i] = (expected[expectedIndices] *
                                 result[expectedIndices]).nonzero().numel() / k
                print('result for h =', h_curr, " :", result)
            print('topHCS accuracy :', '\n', topHCS_accuracy)
Ejemplo n.º 4
0
        for h_i, hVal in enumerate(hVals):
            h = int(k * hVal)
            workers = []  #reusing
            for vec in vecs:
                w = TopHCS(h=h,
                           d=d,
                           c=c,
                           r=r,
                           numBlocks=numBlocks,
                           device=device)
                w.store(vec)
                workers.append(w)

            assert (len(workers) == len(vecs))

            recovered_2 = TopHCS.topKSum(workers, k)
            indexAcc_2[
                h_i,
                k_i] = (expected[expectedIndices] *
                        recovered_2[expectedIndices]).nonzero().numel() / k

            diff = recovered_2[recovered_2 != 0] - expected[recovered_2 != 0]
            L1_2[h_i, k_i] = torch.median(torch.abs(diff))
            L2_2[h_i, k_i] = torch.median(diff**2)

            #indexAcc = (expected == recovered).nonzero().numel() / k
            # Use above only when k == d
            #print("\n", "k = %r; index accuracy = %r" % (k, indexAcc))

    colors = ["#A30CE8", "#FF0000", "#E8710C", "#FFD20D"]