Ejemplo n.º 1
0
    def setUp(self):
        """
        Repeating above test cases but with delays to determine that delay
        flags reach us.
        Returns
        -------

        """

        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        dm = DelayModel(0.9, "normal",
                   DelayModel.DelayDegree.HIGH)
        self.planner = Planner(
            self.env, PLANNING_ALGORITHM,
            self.cluster, SHADOWPlanning('heft',delay_model=dm), delay_model=dm
        )

        self.scheduler = Scheduler(
            self.env, self.buffer, self.cluster, DynamicAlgorithmFromPlan()
        )
        self.telescope = Telescope(
            self.env, config, self.planner, self.scheduler
        )
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Ejemplo n.º 2
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.cluster = Cluster(self.env, config)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                DynamicAlgorithmFromPlan)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            SHADOWPlanning('heft'))
     # planner = None
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Ejemplo n.º 3
0
    def setUp(self) -> None:
        self.env = simpy.Environment()
        self.config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=self.config)
        self.buffer = Buffer(env=self.env,
                             cluster=self.cluster,
                             config=self.config)
        self.scheduler = Scheduler(env=self.env,
                                   buffer=self.buffer,
                                   cluster=self.cluster,
                                   algorithm=None)
        self.planner = Planner(self.env, 'heft', self.cluster,
                               SHADOWPlanning('heft'))
Ejemplo n.º 4
0
    def setUp(self):
        self.env = simpy.Environment()
        self.cluster = Cluster(env=self.env, spec=CLUSTER_CONFIG)

        self.buffer = Buffer(env=self.env,
                             cluster=self.cluster,
                             config=BUFFER_CONFIG)
        self.planner = Planner(self.env, PLAN_ALGORITHM, self.cluster)
        self.observation = Observation('scheduler_observation',
                                       OBS_START_TME,
                                       OBS_DURATION,
                                       OBS_DEMAND,
                                       OBS_WORKFLOW,
                                       type='continuum',
                                       data_rate=2)
Ejemplo n.º 5
0
    def setUp(self) -> None:
        """
        This test scenario is going to test the edge cases like
        double-allocation that may happen.

        For example - the use of curr_allocs should result in the
        _process_current_schedule not double_allocation, so we will test this.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        sched_algorithm = DynamicAlgorithmFromPlan()

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.buffer = Buffer(self.env, self.cluster, config)

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   sched_algorithm)

        self.observation = self.telescope.observations[0]
        self.machine = self.cluster.machines[0]
Ejemplo n.º 6
0
    def setUp(self) -> None:
        """
        Create a planner and a `simpy` environment in which to run dummy
        simulations for the purpose of ensuring the planner works nicely
        when selecting 'batch' as a static scheduling method.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.model = BatchPlanning('batch')

        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
        self.planner = Planner(
            self.env,
            PLAN_ALGORITHM,
            self.cluster,
            self.model,
        )
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
Ejemplo n.º 7
0
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Ejemplo n.º 8
0
 def setUp(self):
     self.env = simpy.Environment()
     cluster = Cluster(env=self.env, spec=CLUSTER_CONFIG)
     buffer = Buffer(env=self.env, cluster=cluster, config=BUFFER_CONFIG)
     self.scheduler = Scheduler(env=self.env,
                                buffer=buffer,
                                cluster=cluster,
                                algorithm=None)
     planner = Planner(self.env, 'heft', cluster)
Ejemplo n.º 9
0
    def setUp(self):
        self.env = simpy.Environment()
        self.config = Config(CONFIG)
        self.cluster = Cluster(env=self.env, config=self.config)

        self.buffer = Buffer(
            env=self.env, cluster=self.cluster, config=self.config
        )
        self.planner = Planner(
            self.env, PLAN_ALGORITHM, self.cluster, SHADOWPlanning('heft')
        )
        self.observation = Observation(
            'scheduler_observation',
            OBS_START_TME,
            OBS_DURATION,
            OBS_DEMAND,
            OBS_WORKFLOW,
            data_rate=2
        )
Ejemplo n.º 10
0
 def testHotBufferConfig(self):
     """
     Process the Hot Buffer section of the config file
     """
     buffer = Buffer(
         env=self.env, cluster=self.cluster, config=self.config
     )
     self.assertEqual(500, buffer.hot[BUFFER_ID].total_capacity)
     self.assertEqual(500, buffer.hot[BUFFER_ID].current_capacity)
     self.assertEqual(5, buffer.hot[BUFFER_ID].max_ingest_data_rate)
Ejemplo n.º 11
0
 def testColdBufferConfig(self):
     """
     Process cold buffer section of the config file
     :return:
     """
     buffer = Buffer(
         env=self.env, cluster=self.cluster, config=self.config
     )
     self.assertEqual(250, buffer.cold[BUFFER_ID].total_capacity)
     self.assertEqual(250, buffer.cold[BUFFER_ID].current_capacity)
     self.assertEqual(2, buffer.cold[BUFFER_ID].max_data_rate)
Ejemplo n.º 12
0
class TestSchedulerIntegration(unittest.TestCase):
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_FIFO_with_buffer(self):
        """
        Demonstrate that the scheduler accurately schedules when we have
        other Actors working in tandem.

        Expectations:
            - After 1 timestep in the simualtion, we have 5 resources
            available of the 10 that we start with.
            -
        Returns
        -------

        """
        self.env.run(until=1)

        self.assertEqual(10, len(self.cluster._resources['available']))
        # This takes timestep, data in the HotBuffer should be 4
        self.env.run(until=2)
        self.assertEqual(5, len(self.cluster._resources['available']))
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        # self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.assertEqual(210, self.buffer.cold[0].current_capacity)
        self.env.run(until=32)
        # Ensure the time
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        # 30 timesteps until we finish everything + 81 timesteps to complete
        # workflow plan.
        self.env.run(until=124)
        # As we have been processing the current observation, we are also
        # ingestting the next one.
        self.assertEqual(250, self.buffer.cold[0].current_capacity)
Ejemplo n.º 13
0
 def setUp(self):
     self.env = simpy.Environment()
     sched_algorithm = DynamicAlgorithmFromPlan()
     config = Config(LONG_CONFIG)
     self.cluster = Cluster(self.env, config)
     planning_model = SHADOWPlanning(algorithm=PLANNING_ALGORITHM)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            planning_model)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                sched_algorithm)
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Ejemplo n.º 14
0
    def setUp(self):
        self.env = simpy.Environment()
        sched_algorithm = FifoAlgorithm()
        self.planner = Planner(self.env, test_data.planning_algorithm,
                               test_data.machine_config)
        self.cluster = Cluster(self.env, CLUSTER_CONFIG)
        self.buffer = Buffer(self.env, self.cluster, BUFFER_CONFIG)
        self.observations = [
            Observation('scheduler_observation',
                        OBS_START_TME,
                        OBS_DURATION,
                        OBS_DEMAND,
                        OBS_WORKFLOW,
                        type='continuum',
                        data_rate=5)
        ]
        telescopemax = 36  # maximum number of antennas

        self.telescope = Telescope(self.env, OBSERVATION_CONFIG,
                                   self.scheduler, self.planner)
        self.scheduler = Scheduler(self.env, sched_algorithm, self.buffer,
                                   self.cluster)
Ejemplo n.º 15
0
    def setUp(self):
        """

        Returns
        -------

        """
        """
        setup the buffer and do config stuff
        :return: Nothing
        """
        self.env = simpy.Environment()
        self.config = Config(CONFIG)
        self.cluster = Cluster(env=self.env, config=self.config)
        self.buffer = Buffer(self.env, self.cluster, self.config)
        self.observation = Observation(
            name='test_observation',
            start=OBS_START_TME,
            duration=OBS_DURATION,
            demand=OBS_DEMAND,
            workflow=OBS_WORKFLOW,
            data_rate=5,
        )
Ejemplo n.º 16
0
 def setUp(self):
     self.env = simpy.Environment()
     sched_algorithm = DynamicAlgorithmFromPlan()
     config = Config(HEFT_CONFIG)
     dm = DelayModel(0.1, "normal")
     self.model = SHADOWPlanning('heft', dm)
     self.cluster = Cluster(self.env, config=config)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.planner = Planner(self.env,
                            PLAN_ALGORITHM,
                            self.cluster,
                            self.model,
                            delay_model=dm)
     self.observation = Observation('planner_observation',
                                    OBS_START_TME,
                                    OBS_DURATION,
                                    OBS_DEMAND,
                                    OBS_WORKFLOW,
                                    data_rate=OBS_DATA_RATE)
Ejemplo n.º 17
0
    def setUp(self):
        self.algorithm = BatchProcessing
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.algorithm = BatchProcessing()
        self.model = BatchPlanning('batch')
        self.planner = Planner(
            self.env,
            'heft',
            self.cluster,
            self.model,
        )

        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
Ejemplo n.º 18
0
class TestTelescopeIngest(unittest.TestCase):
    def setUp(self) -> None:
        self.env = simpy.Environment()
        self.config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=self.config)
        self.buffer = Buffer(env=self.env,
                             cluster=self.cluster,
                             config=self.config)
        self.scheduler = Scheduler(env=self.env,
                                   buffer=self.buffer,
                                   cluster=self.cluster,
                                   algorithm=None)
        self.planner = Planner(self.env, 'heft', self.cluster,
                               SHADOWPlanning('heft'))

    def testIngest(self):
        telescope = Telescope(env=self.env,
                              config=self.config,
                              planner=self.planner,
                              scheduler=self.scheduler)
        self.assertEqual(0, telescope.telescope_use)
        self.env.process(telescope.run())
        self.env.process(self.cluster.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.buffer.run())
        self.env.run(until=2)
        self.assertEqual(36, telescope.telescope_use)
        self.assertEqual(5, len(self.cluster._resources['available']))
        # After 1 timestep, data in the HotBuffer should be 2
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=11)
        self.assertEqual(len([self.buffer.hot[0].observations["transfer"]]), 1)
        self.assertEqual(462, self.buffer.hot[0].current_capacity)
        self.assertEqual(248, self.buffer.cold[0].current_capacity)
        self.env.run(until=12)
        self.assertEqual(0, telescope.telescope_use)
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.assertEqual(5, len(self.cluster._tasks['finished']))
Ejemplo n.º 19
0
	def __init__(
			self,
			env,
			telescope_config,
			cluster_config,
			buffer_config,
			planning_algorithm,
			scheduling_algorithm,
			event_file,
			visualisation=False
	):

		self.env = env
		# Event file setup
		self.event_file = event_file
		self.visualisation = visualisation
		if event_file is not None:
			self.monitor = Monitor(self)
		if visualisation:
			self.visualiser = Visualiser(self)
		# Process necessary config files

		# Initiaise Actor and Resource objects

		self.cluster = Cluster(env, cluster_config)
		self.buffer = Buffer(env, self.cluster, config=buffer_config)
		self.planner = Planner(env, planning_algorithm, cluster_config)
		self.scheduler = Scheduler(
			env, self.buffer, self.cluster, scheduling_algorithm
		)

		self.telescope = Telescope(
			env=self.env,
			config=telescope_config,
			planner=self.planner,
			scheduler=self.scheduler
		)
Ejemplo n.º 20
0
class TestSchedulerDelayHelpers(unittest.TestCase):
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env,
                               PLANNING_ALGORITHM,
                               self.cluster,
                               SHADOWPlanning('heft'),
                               delay_model=DelayModel(0.3, "normal"))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_propogate_delay_returns_updated_workflow(self):
        """
Ejemplo n.º 21
0
class TestBufferIngestDataStream(unittest.TestCase):

    def setUp(self):
        """

        Returns
        -------

        """
        """
        setup the buffer and do config stuff
        :return: Nothing
        """
        self.env = simpy.Environment()
        self.config = Config(CONFIG)
        self.cluster = Cluster(env=self.env, config=self.config)
        self.buffer = Buffer(self.env, self.cluster, self.config)
        self.observation = Observation(
            name='test_observation',
            start=OBS_START_TME,
            duration=OBS_DURATION,
            demand=OBS_DEMAND,
            workflow=OBS_WORKFLOW,
            data_rate=5,
        )

    def testBasicIngest(self):
        """
        Test the 'ingest_data_stream' event, which is to be called in the
        Scheduler. The changes we expect in this are simple - after n
        timesteps, the HotBuffer.currect_capacity will have reduced
        n*observation_ingest_rate.

        We test a couple of requirements here.
        """
        self.observation.status = RunStatus.RUNNING

        ret = self.env.process(
            self.buffer.ingest_data_stream(
                self.observation
            )
        )
        self.env.run(until=1)
        self.assertEqual(495, self.buffer.hot[BUFFER_ID].current_capacity)
        self.env.run(until=10)
        self.assertEqual(self.env.now, 10)
        self.assertEqual(450, self.buffer.hot[BUFFER_ID].current_capacity)
        self.assertEqual(
            self.buffer.hot[BUFFER_ID].observations["stored"][0],
            self.observation
        )

    def testIngestPrerequisites(self):
        """
        In order to call ingest_data_stream, the observation must be marked as
        "RunStatus.RUNNING" - otherwise we will  be processing an observation
        that hasn't started!

        -------

        """
        ret = self.env.process(
            self.buffer.ingest_data_stream(
                self.observation
            )
        )

        self.assertRaises(
            RuntimeError, self.env.run, until=1
        )

    def testIngestObservationNotRunning(self):
        """
        The buffer won't ingest if the observation is not marked as
        RunStatus.RUNNING
        """

        self.assertEqual(RunStatus.WAITING, self.observation.status)
        self.env.process(self.buffer.ingest_data_stream(self.observation))
        self.assertRaises(
            RuntimeError, self.env.run, until=1
        )

    #
    def testIngestEdgeCase(self):
        """
        Buffer must accept ingest at rate up to 'max ingest data rate' but
        raises an exception if the ingest rate for an observation is greater
        (this means we have an error).

        In addition, we are coordinating this ingest between the scheduler and
        the telescope and the cluster so these actors also need to work
        together in some way, which this test will also attempt to do .

        """
        self.observation.status = RunStatus.RUNNING

        self.observation.ingest_data_rate = 20
        ret = self.env.process(
            self.buffer.ingest_data_stream(
                self.observation
            )
        )
        self.assertRaises(ValueError, self.env.run, until=1)

    def test_ingest_capacity_checks(self):
        """

        The buffer checks the hot and cold buffer for capacity;
        need to make sure that if either the hot buffer or the cold buffer do
        not have enough room for the observation, it is not scheduled.

        Returns
        -------

        """

        self.buffer.hot[BUFFER_ID].current_capacity = 2
        self.assertFalse(
            self.buffer.check_buffer_capacity(self.observation)
        )

        self.buffer.hot[BUFFER_ID].current_capacity = 100
        self.buffer.cold[BUFFER_ID].current_capacity = 1
        self.assertFalse(
            self.buffer.check_buffer_capacity(self.observation)
        )
Ejemplo n.º 22
0
class TestBufferRequests(unittest.TestCase):

    def setUp(self):
        self.env = simpy.Environment()
        self.config = Config(CONFIG)
        self.cluster = Cluster(env=self.env, config=self.config)

        self.buffer = Buffer(
            env=self.env, cluster=self.cluster, config=self.config
        )
        self.planner = Planner(
            self.env, PLAN_ALGORITHM, self.cluster, SHADOWPlanning('heft')
        )
        self.observation = Observation(
            'scheduler_observation',
            OBS_START_TME,
            OBS_DURATION,
            OBS_DEMAND,
            OBS_WORKFLOW,
            data_rate=2
        )

    def tearDown(self):
        pass

    def test_buffer_hot_to_cold(self):
        """
        This tests an ingest, and then, once we have a successful ingest,
        the movement from one buffer to the other.

        Using the current situation, we should have the observation finished by
        timestep [TBC], and then the observation moved across by timestep [TBC]

        Returns
        -------

        """
        self.observation.status = RunStatus.RUNNING
        self.env.process(self.buffer.ingest_data_stream(self.observation))
        self.env.run(until=10)
        self.assertEqual(480, self.buffer.hot[BUFFER_ID].current_capacity)

        # Moving data from one to the other
        self.assertEqual(250, self.buffer.cold[BUFFER_ID].current_capacity)
        self.assertTrue(self.observation in
                        self.buffer.hot[BUFFER_ID].observations["stored"])
        self.env.process(self.buffer.move_hot_to_cold(0))
        self.env.run(until=15)
        self.assertEqual(240, self.buffer.cold[BUFFER_ID].current_capacity)
        self.assertEqual(490, self.buffer.hot[BUFFER_ID].current_capacity)
        self.env.run(until=20)
        self.assertEqual(230, self.buffer.cold[BUFFER_ID].current_capacity)
        self.env.run(until=22)
        self.assertEqual(500, self.buffer.hot[BUFFER_ID].current_capacity)
        self.assertEqual(230, self.buffer.cold[BUFFER_ID].current_capacity)
        self.assertListEqual(
            [self.observation],
            self.buffer.cold[BUFFER_ID].observations['stored']
        )

    def test_hot_transfer_observation(self):
        """
        When passed an observation, over a period of time ensure that the
        complete data set is removed.

        Only when all data has finished being transferred do we add the
        observation to ColdBuffer.observations.

        Observation duration is 10; ingest rate is 5.

        Observation.total_data_size => 50

        ColdBuffer.max_data_rate => 2; therefore

        Time until Observation is moved => 25.

        Returns
        -------
        """
        self.buffer.hot[BUFFER_ID].current_capacity = 450
        self.observation.total_data_size = 50
        data_left_to_transfer = self.observation.total_data_size
        self.buffer.hot[BUFFER_ID].observations["stored"].append(
            self.observation)
        data_left_to_transfer = self.buffer.hot[BUFFER_ID].transfer_observation(
            self.observation,
            self.buffer.cold[BUFFER_ID].max_data_rate,
            data_left_to_transfer
        )
        self.assertEqual(48, data_left_to_transfer)
        self.assertTrue(
            self.observation in self.buffer.hot[BUFFER_ID].observations[
                "stored"]
        )
        self.assertEqual(452, self.buffer.hot[BUFFER_ID].current_capacity)
        timestep = 24
        while data_left_to_transfer > 0:
            data_left_to_transfer = self.buffer.hot[
                BUFFER_ID].transfer_observation(
                self.observation,
                self.buffer.cold[BUFFER_ID].max_data_rate,
                data_left_to_transfer
            )
        self.assertEqual(0, data_left_to_transfer)
        self.assertEqual(500, self.buffer.hot[BUFFER_ID].current_capacity)

    def test_cold_receive_data(self):
        """
        When passed an observation, over a period of time ensure that the
        complete data set is added to the Cold Buffer.

        Only when all data has finished being transferred do we add the
        observation to ColdBuffer.observations.

        Observation duration is 10; ingest rate is 5.

        Observation.total_data_size => 50

        ColdBuffer.max_data_rate => 2; therefore

        Time until Observation is moved => 25.

        Returns
        -------
        """

        self.observation.total_data_size = 50
        data_left_to_transfer = self.observation.total_data_size
        data_left_to_transfer = self.buffer.cold[BUFFER_ID].receive_observation(
            self.observation,
            data_left_to_transfer
        )
        self.assertEqual(48, data_left_to_transfer)
        self.assertFalse(
            self.observation in self.buffer.cold[BUFFER_ID].observations[
                'stored']
        )

        while data_left_to_transfer > 0:
            data_left_to_transfer = self.buffer.cold[
                BUFFER_ID].receive_observation(
                self.observation,
                data_left_to_transfer
            )
        self.assertTrue(
            self.observation in self.buffer.cold[BUFFER_ID].observations[
                'stored']
        )
        self.assertEqual(None,
                         self.buffer.cold[BUFFER_ID].observations['transfer'])

    # @unittest.skip("Functionality has changed")
    def testWorkflowAddedToQueue(self):
        """
        We only add a workflow to the queue once an observation has finished
        (and, therefore, after we have finished generating a plan for it).
        :return: None
        """

        # Calling planner.run() will store the generate plan in the observation object
        # calling next() runs the iterator immediately after generator is
        # called
        self.observation.ast = 0
        self.observation.plan = self.planner.run(self.observation,
                                                 self.buffer, None)
        self.assertTrue(self.observation.plan is not None)
Ejemplo n.º 23
0
 def setUp(self):
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.model = SHADOWPlanning('heft')
     self.cluster = Cluster(env=self.env, config=config)
     self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
Ejemplo n.º 24
0
class TestBufferIngestDataStream(unittest.TestCase):
    def setUp(self):
        """

		Returns
		-------

		"""
        """
		setup the buffer and do config stuff
		:return: Nothing
		"""
        self.env = simpy.Environment()
        self.cluster = Cluster(self.env, CLUSTER_CONFIG)
        self.buffer = Buffer(self.env, self.cluster, BUFFER_CONFIG)
        self.observation = Observation(
            name='test_observation',
            start=OBS_START_TME,
            duration=OBS_DURATION,
            demand=OBS_DEMAND,
            workflow=OBS_WORKFLOW,
            type='continuum',
            data_rate=5,
        )

    def testBasicIngest(self):
        """
		Test the 'ingest_data_stream' event, which is to be called in the
		Scheduler. The changes we expect in this are simple - after n
		timesteps, the HotBuffer.currect_capacity will have reduced
		n*observation_ingest_rate.
		"""
        self.observation.status = RunStatus.RUNNING

        ret = self.env.process(self.buffer.ingest_data_stream(
            self.observation))
        self.env.run(until=1)
        self.assertEqual(495, self.buffer.hot.current_capacity)
        self.env.run(until=10)
        self.assertEqual(450, self.buffer.hot.current_capacity)
        self.assertEqual(self.buffer.hot.stored_observations[0],
                         self.observation)

    def testIngestObservationNotRunning(self):
        """
		The buffer won't ingest if the observation is not marked as
		RunStatus.RUNNING
		"""

        self.assertEqual(RunStatus.WAITING, self.observation.status)
        self.env.process(self.buffer.ingest_data_stream(self.observation))
        # self.assertRaises(
        # 	RuntimeError, self.env.process, self.buffer.ingest_data_stream(
        # 		self.observation
        # 	)
        # )

        self.assertRaises(RuntimeError, self.env.run, until=1)

        # self.assertEqual(500, self.buffer.hot.current_capacity)

    def testIngestEdgeCase(self):
        """
Ejemplo n.º 25
0
    def __init__(self,
                 env,
                 config,
                 instrument,
                 planning_model,
                 planning_algorithm,
                 scheduling,
                 delay=None,
                 timestamp=None,
                 to_file=False,
                 hdf5_path=None,
                 **kwargs):

        #: :py:obj:`simpy.Environment` object
        self.env = env

        if timestamp:
            #: :py:obj:`~topsim.core.monitor.Monitor` instance
            self.monitor = Monitor(self, timestamp)
            self._timestamp = timestamp
        else:
            sim_start_time = f'{time.time()}'.split('.')[0]
            self._timestamp = sim_start_time
            self.monitor = Monitor(self, sim_start_time)
        # Process necessary config files

        self._cfg_path = config  #: Configuration path

        # Initiaise Actor and Resource objects
        cfg = Config(config)
        #: :py:obj:`~topsim.core.cluster.Cluster` instance
        self.cluster = Cluster(env, cfg)
        #: :py:obj:`~topsim.core.buffer.Buffer` instance
        self.buffer = Buffer(env, self.cluster, cfg)
        planning_algorithm = planning_algorithm
        planning_model = planning_model

        if not delay:
            # TODO Have this approach replicated so we don't specify the
            #  model outside the simulation.
            delay = DelayModel(0.0, "normal", DelayModel.DelayDegree.NONE)
        self.planner = Planner(env, planning_algorithm, self.cluster,
                               planning_model, delay)
        scheduling_algorithm = scheduling()
        #: :py:obj:`~topsim.core.scheduler.Scheduler` instance
        self.scheduler = Scheduler(env, self.buffer, self.cluster,
                                   scheduling_algorithm)
        #: User-defined :py:obj:`~topsim.core.instrument.Instrument` instance
        self.instrument = instrument(env=self.env,
                                     config=cfg,
                                     planner=self.planner,
                                     scheduler=self.scheduler)

        #: :py:obj:`bool` Flag for producing simulation output in a `.pkl`
        # file.
        self.to_file = to_file
        if self.to_file and hdf5_path:
            try:
                if os.path.exists(hdf5_path):
                    LOGGER.warning('Output HDF5 path already exists, '
                                   'simulation appended to existing file')
                self._hdf5_store = pd.HDFStore(hdf5_path)
                self._hdf5_store.close()
            except ValueError(
                    'Check pandas.HDFStore documentation for valid file path'):
                raise
        elif self.to_file and not hdf5_path:
            raise ValueError(
                'Attempted to initialise Simulation object that outputs'
                'to file without providing file path')
        else:
            LOGGER.info(
                'Simulation output will not be stored directly to file')

        if 'delimiters' in kwargs:
            #: Used to separate different simulations in HDF5 output
            self._delimiters = kwargs['delimiters']
        else:
            self._delimiters = ''

        self.running = False
Ejemplo n.º 26
0
class TestColdBufferRequests(unittest.TestCase):
    def setUp(self):
        self.env = simpy.Environment()
        self.cluster = Cluster(env=self.env, spec=CLUSTER_CONFIG)

        self.buffer = Buffer(env=self.env,
                             cluster=self.cluster,
                             config=BUFFER_CONFIG)
        self.planner = Planner(self.env, PLAN_ALGORITHM, self.cluster)
        self.observation = Observation('scheduler_observation',
                                       OBS_START_TME,
                                       OBS_DURATION,
                                       OBS_DEMAND,
                                       OBS_WORKFLOW,
                                       type='continuum',
                                       data_rate=2)

    def tearDown(self):
        pass

    def testHotColdInteraction(self):
        """
		Testing the results of running 'buffer.request_data_from(observation)'.

		Returns
		-------
		"""
        # TODO THIS NEED TO CHANGE
        # TODO Hot Cold transfer should be automatic, not instigated by the
        #  scheduler. THis ensures that the scheduler only needs to check the
        #  cold buffer, and that movement of data from the hot buffer to the
        #  cold buffer is 'automatic' (that is, once data has been through
        #  the hot buffer completely and INGEST run on that data, we can move
        #  it to a large buffer store).
        # Prelimns
        self.observation.status = RunStatus.RUNNING
        self.env.process(self.buffer.ingest_data_stream(self.observation))
        self.env.run(until=10)
        self.assertEqual(480, self.buffer.hot.current_capacity)

        # Moving data from one to the other
        self.assertEqual(250, self.buffer.cold.current_capacity)
        self.env.process(self.buffer.request_data_from(self.observation))
        self.env.run(until=15)
        self.assertEqual(240, self.buffer.cold.current_capacity)
        self.assertEqual(490, self.buffer.hot.current_capacity)
        self.env.run(until=40)
        self.assertEqual(230, self.buffer.cold.current_capacity)
        self.assertEqual(500, self.buffer.hot.current_capacity)
        self.assertListEqual([self.observation], self.buffer.cold.observations)

    def testHotColdErrors(self):
        """
		We haven't processed the observation yet, so there shouldn't be
		anything in the Hot Buffer to request
		"""
        self.env.process(self.buffer.request_data_from(self.observation))
        self.assertRaises(
            RuntimeError,
            self.env.run,
            until=10,
        )

    def testWorkflowAddedToQueue(self):
        """
		We only add a workflow to the queue once an observation has finished
		(and, therefore, after we have finished generating a plan for it).
		:return: None
		"""

        # Calling planner.run() will store the generate plan in the observation object
        # calling next() runs the iterator immediately after generator is called
        next(self.planner.run(self.observation))
        # Buffer observation queue should be empty
        self.assertTrue(self.buffer.observations_for_processing.empty())
        # self.buffer.add_observation_to_waiting_workflows(self.observation)
        self.assertTrue(self.buffer.observations_for_processing.size() == 1)
Ejemplo n.º 27
0
class Simulation:
    """
    The Simulation class is a wrapper for all Actors; we start the simulation
    through the simulation class, which in turn invokes the initial Actors and
    monitoring, and provides the conditions for checking if the simulation has
    finished.

    Parameters
    ----------

    env : :py:obj:`simpy.Environment` object
        The discrete-event simulation environment. This is the way TOpSim
        simulation maintains state across the different actors,
        and interfaces with the simpy processes.

    config : str
        Path to the simulation JSOn configuration file

    instrument : :py:obj:`~topsim.core.instrument.Instrument`
        User-defined implementation of the Instrument class.

    planning_model : :py:obj:`~topsim.algorithms.planning.Planning` object
        User-defined implementation of the planning algorithm class

    planning_algorithm: str
        Reference to the specific algorithm implementated in `planning_model`

    scheduling: :py:obj:`~topsim.algorithms.scheduling.Algorithm`
        User-defined implementation of the scheduling algorithm
        :py:obj:`abc.ABC`.

    delay: :py:obj:`~topsim.core.delay.DelayModel`,  optional
         for the simulation.

    timestamp: str, optional
        Optional Simulation start-time; this is useful for testing, to ensure we
        name the file and the tests match up. Also useful if you do not want to
        use the time of the simulation as the name.

    to_file : bool, optional
        `True` if the simulation is to be written to a Pandas `pkl` file;
        `False` will return pandas DataFrame objects at the completion of the
        :py:meth:`~topsim.core.simulation.Simulation.run` function.

    Notes
    -----
    If to_file left as `False`, simulation results and output will be returned
    as Pandas DataFrames (see
    :py:meth:`~topsim.core.simulation.Simulation.run`) . This is designed for
    running multiple simulations, allowing for the appending of individual
    simulation results to a 'global' :py:obj:`~pandas.DataFrame` . Current
    support for output is limited to Panda's `.pkl` files.

    Parsing in the option `delimiters` provides a way of differentiating
    between multiple simulations within a single HDF5 store (for example,
    in an experiment). A typical experimental loop may involve the following
    structure:

    >>> for heuristic in list_of_scheduling_heuristics
    >>>     for algorithm in list_of_planning_algorithms
    >>>         for cfg in list_of_system_configs
    >>>             ...
    >>>             delimiter = f'{heuristic}/{algorithm}/{cfg}'

    This means when querying HDF5 output files, the results of each
    simulation can be filtered nicely:

    >>> store = pd.HDFStore('path/to/output.h5')
    >>> # Returns a dataframe of simulation results
    >>> store['heuristic_1/algorithm_3/cfg.json']

    Examples
    --------

    Standard simulation with data frame output

    >>> env = simpy.environment()
    >>> config = Config('path/to/config')
    >>> instrument = CustomInstrument()
    >>> plan = PlanningModel()
    >>> sched = SchedulingModel()
    >>> simulation = Simulation(env, config, instrument,plan,sched)

    If we want delays in the model:

    >>> dm = DelayModel(prob=0.1, dist='normal', dm=DelayModel.DelayDegree.LOW)
    >>> simulation =  Simulation(
    >>>    env, config, instrument,plan,sched, delay=dm
    >>> )

    Running a simulation to completion:

    >>> df = simulation.run()

    Running a simulation for a specific time period, then resuming:

    >>> df = simulation.run(runtime=100)
    >>> ### Check current status of simulatiion
    >>> df = simulation.resume(until=150)

    Raises
    ------
    """
    def __init__(self,
                 env,
                 config,
                 instrument,
                 planning_model,
                 planning_algorithm,
                 scheduling,
                 delay=None,
                 timestamp=None,
                 to_file=False,
                 hdf5_path=None,
                 **kwargs):

        #: :py:obj:`simpy.Environment` object
        self.env = env

        if timestamp:
            #: :py:obj:`~topsim.core.monitor.Monitor` instance
            self.monitor = Monitor(self, timestamp)
            self._timestamp = timestamp
        else:
            sim_start_time = f'{time.time()}'.split('.')[0]
            self._timestamp = sim_start_time
            self.monitor = Monitor(self, sim_start_time)
        # Process necessary config files

        self._cfg_path = config  #: Configuration path

        # Initiaise Actor and Resource objects
        cfg = Config(config)
        #: :py:obj:`~topsim.core.cluster.Cluster` instance
        self.cluster = Cluster(env, cfg)
        #: :py:obj:`~topsim.core.buffer.Buffer` instance
        self.buffer = Buffer(env, self.cluster, cfg)
        planning_algorithm = planning_algorithm
        planning_model = planning_model

        if not delay:
            # TODO Have this approach replicated so we don't specify the
            #  model outside the simulation.
            delay = DelayModel(0.0, "normal", DelayModel.DelayDegree.NONE)
        self.planner = Planner(env, planning_algorithm, self.cluster,
                               planning_model, delay)
        scheduling_algorithm = scheduling()
        #: :py:obj:`~topsim.core.scheduler.Scheduler` instance
        self.scheduler = Scheduler(env, self.buffer, self.cluster,
                                   scheduling_algorithm)
        #: User-defined :py:obj:`~topsim.core.instrument.Instrument` instance
        self.instrument = instrument(env=self.env,
                                     config=cfg,
                                     planner=self.planner,
                                     scheduler=self.scheduler)

        #: :py:obj:`bool` Flag for producing simulation output in a `.pkl`
        # file.
        self.to_file = to_file
        if self.to_file and hdf5_path:
            try:
                if os.path.exists(hdf5_path):
                    LOGGER.warning('Output HDF5 path already exists, '
                                   'simulation appended to existing file')
                self._hdf5_store = pd.HDFStore(hdf5_path)
                self._hdf5_store.close()
            except ValueError(
                    'Check pandas.HDFStore documentation for valid file path'):
                raise
        elif self.to_file and not hdf5_path:
            raise ValueError(
                'Attempted to initialise Simulation object that outputs'
                'to file without providing file path')
        else:
            LOGGER.info(
                'Simulation output will not be stored directly to file')

        if 'delimiters' in kwargs:
            #: Used to separate different simulations in HDF5 output
            self._delimiters = kwargs['delimiters']
        else:
            self._delimiters = ''

        self.running = False

    def start(self, runtime=-1):
        """
        Run the simulation, either for the specified runtime, OR until the
        exit conditions are reached.

        The exit conditions are:

            * There are no more observations to process,
            * There is nothing left in the Buffer
            * The Scheduler is not waiting to allocate machines to resources
            * There are not tasks still running on the cluster.

        Parameters
        ----------
        runtime : int
            Nominiated runtime of the simulation. If the simulation length is
            known, pass that as the argument. If not, passing in a negative
            value (typically, just -1) will run the simulation until the
            exit condition is reached.

        Returns
        -------
        If `to_file` is True:
            sim_data_path, task_data_path : str
                Path names for the global simulation runtime and the
                individual task data output.
        If `to_file` is False:
            Two pandas.DataFrame objects for global sim runtime and task data.

        """
        if self.running:
            raise RuntimeError(
                "start() has already been called!"
                "Use resume() to continue a simulation that is already in "
                "progress.")

        self.running = True
        self.env.process(self.monitor.run())
        self.env.process(self.instrument.run())
        self.env.process(self.cluster.run())

        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.buffer.run())

        if runtime > 0:
            self.env.run(until=runtime)
        else:
            while not self.is_finished():
                self.env.run(self.env.now + 1)
            self.env.run(self.env.now + 1)
        LOGGER.info("Simulation Finished @ %s", self.env.now)

        if self.to_file and self._hdf5_store is not None:
            global_df = self.monitor.df
            task_df = self._generate_final_task_data()
            self._hdf5_store.open()
            self._compose_hdf5_output(global_df, task_df)
            self._hdf5_store.close()

        else:
            return self.monitor.df, self._generate_final_task_data()

    def resume(self, until):
        """
        Resume a simulation for a period of time.

        Useful for testing purposes, as we do not re-initialise the process
        calls as we used to in
        :py:obj:`~core.topsim.simulation.Simulation.start`

        Parameters
        ----------
        until : int
            The (non-inclusive) :py:obj:`Simpy.env.now` timestep that we want to
            continue to in the simulation

        Returns
        -------
        self.env.now : float
            The current time in the simulation
        """
        if not self.running:
            raise RuntimeError(
                "Simulation has not been started! Call start() to initialise "
                "the process stack.")
        self.env.run(until=until)

    def is_finished(self):
        """
        Check if simulation is finished based on the following finish
        conditions:

        * The Instrument is idle (i.e. has no more observations left to run)
        * The Cluster is idle (no tasks are running)
        * The Buffer is empty (no data sits on the buffer)
        * The Schedule is idle (there are no more workflows/tasks queued)

        It is only when all of these return True that the simulation is
        regarded as finished.

        Returns
        -------
        True if the above requirements are met; False otherwise (i.e. the
        simulation is still running).

        """
        if (self.buffer.is_empty() and self.cluster.is_idle()
                and self.scheduler.is_idle() and self.instrument.is_idle()):
            return True
        return False

    @staticmethod
    def _split_monolithic_config(self, json):
        return json

    def _generate_final_task_data(self):
        """
        Generate a final data frame from the cluster's task dataframe output.
        Returns
        -------

        """

        df = self.cluster.finished_task_time_data()
        df = df.T
        size = len(df)
        df['scheduling'] = [self.planner.algorithm for x in range(size)]
        df['planning'] = [repr(self.scheduler.algorithm) for x in range(size)]
        df['config'] = [self._cfg_path for x in range(size)]
        return df

    def _compose_hdf5_output(self, global_df, tasks_df):
        """
        Given a :py:obj:`pandas.HDFStore()` object, put global simulation,
        task specific, and configuration data into HDF5 storage files.
        Parameters
        ----------
        global_df : :py:obj:pandas.DataFrame
            The global, per-timestep overview of the simulation
        tasks_df : :py:obj:pandas.DataFrame
            Information on each tasks' execution throughout the simulation.
        Returns
        -------

        """
        if self._timestamp:
            ts = f'd{self._timestamp}'
        else:
            ts = f'd{datetime.datetime.today().strftime("%y_%m_%d_%H_%M_%S")}'

        workflows = self._create_config_table(self._cfg_path)

        sanitised_path = self._cfg_path.replace(".json", '').split('/')[-1]
        final_key = f'{ts}/{self._delimiters}/{sanitised_path}'
        self._hdf5_store.put(key=f"{final_key}/sim", value=global_df)
        self._hdf5_store.put(key=f'{final_key}/tasks', value=tasks_df)
        self._hdf5_store.put(key=f'{final_key}/config', value=workflows)

        return self._hdf5_store

    def _stringify_json_data(self, path):
        """
        From a given file pointer, get a string representation of the data stored

        Parameters
        ----------
        fp : file pointer for the opened JSON file

        Returns
        -------
        jstr : String representation of JSON-encoded data

        Raises:

        """

        try:
            with open(path) as fp:
                jdict = json.load(fp)
        except json.JSONDecodeError:
            raise

        jstr = json.dumps(jdict)  # , indent=2)
        return jstr

    def _create_config_table(self, path):
        """
        From the simulation config files, find the paths for each observation
        workflow and produce a table of this information

        Parameters
        ----------
        path

        Returns
        -------

        """

        cfg_str = self._stringify_json_data(path)
        jdict = json.loads(cfg_str)
        pipelines = jdict['instrument']['telescope']['pipelines']
        ds = [['simulation_config', path, cfg_str]]
        for observation in pipelines:
            p = pipelines[observation]['workflow']
            p = p.replace('publications', 'archived_results')
            wf_str = self._stringify_json_data(p)
            tpl = [f'{observation}', p, wf_str]
            ds.append(tpl)

        df = pd.DataFrame(ds, columns=['entity', 'config_path', 'config_json'])
        return df
Ejemplo n.º 28
0
class TestSchedulerIngest(unittest.TestCase):
    def setUp(self) -> None:
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))
        # planner = None
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)

    def testSchdulerCheckIngestReady(self):
        """
        Check the return status of check_ingest_capacity is correct
        """
        pipelines = self.telescope.pipelines
        observation = self.telescope.observations[0]

        max_ingest = self.telescope.max_ingest
        # There should be capacity
        self.assertEqual(0.0, self.env.now)
        ret = self.scheduler.check_ingest_capacity(observation, pipelines,
                                                   max_ingest)
        self.assertTrue(ret)

        # Let's remove capacity to check it returns false
        tmp = self.cluster._resources['available']
        self.cluster._resources['available'] = self.cluster._resources[
            'available'][:3]
        ret = self.scheduler.check_ingest_capacity(observation, pipelines,
                                                   max_ingest)
        self.assertFalse(ret)
        self.cluster._resources['available'] = tmp
        self.assertEqual(10, len(self.cluster._resources['available']))

    def testSchedulerProvisionsIngest(self):
        """
        Ensure that the scheduler correcly coordinates ingest onto the Cluster
        and into the Buffer

        Returns
        -------
        """
        pipelines = self.telescope.pipelines
        max_ingest = self.telescope.max_ingest
        observation = self.telescope.observations[0]

        ready_status = self.scheduler.check_ingest_capacity(
            observation, pipelines, max_ingest)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        observation.status = RunStatus.WAITING
        status = self.env.process(
            self.scheduler.allocate_ingest(observation, pipelines,
                                           self.planner))

        self.env.run(until=1)
        self.assertEqual(5, len(self.cluster._resources['available']))
        # After 1 timestep, data in the HotBuffer should be 2
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=30)
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.assertEqual(210, self.buffer.cold[0].current_capacity)
Ejemplo n.º 29
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.cluster = Cluster(self.env, config)
     self.buffer = Buffer(self.env, self.cluster, config)
Ejemplo n.º 30
0
class TestDelaysInActors(unittest.TestCase):

    def setUp(self):
        """
        Repeating above test cases but with delays to determine that delay
        flags reach us.
        Returns
        -------

        """

        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        dm = DelayModel(0.9, "normal",
                   DelayModel.DelayDegree.HIGH)
        self.planner = Planner(
            self.env, PLANNING_ALGORITHM,
            self.cluster, SHADOWPlanning('heft',delay_model=dm), delay_model=dm
        )

        self.scheduler = Scheduler(
            self.env, self.buffer, self.cluster, DynamicAlgorithmFromPlan()
        )
        self.telescope = Telescope(
            self.env, config, self.planner, self.scheduler
        )
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_scheduler_delay_detection(self):
        """
        Nothing should change until we reach the workflow plan, as we are
        testing TaskDelays
        Returns
        -------
        """

        self.env.run(until=1)
        # Remember - env starts at 0, we don't start until 1.
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.env.run(until=2)

        # After 1 timestep, data in the HotBuffer should be 4
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.env.run(until=44)
        # We know that the schedule has been delayed - however, we don't
        # report this to the telescope until we know how long we are delayed
        # (that is, until the task has completely finished its duration).
        # In this instance. we know that the first task is going to be
        # delayed, and so wait until it's completed execution to trigger a
        # delay.
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        self.env.run(until=45)
        self.assertTrue(ScheduleStatus.DELAYED,self.scheduler.schedule_status)
        self.env.run(until=124)
        # Assert that we still have tasks running
        # self.assertLess(
        #     0, len(self.cluster.clusters['default']['tasks']['running'])
        # )
        self.assertNotEqual(250, self.buffer.cold[0].current_capacity)

    def test_telescope_delay_detection(self):
        """

        Returns
        -------

        """
        self.env.run(until=1)
        # Remember - env starts at 0, we don't start until 1.
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.env.run(until=2)

        # After 1 timestep, data in the HotBuffer should be 4
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.env.run(until=32)
        # Ensure the time
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        self.env.run(until=100)
        self.assertEqual(ScheduleStatus.DELAYED,self.scheduler.schedule_status)
        self.assertTrue(self.telescope.delayed)

    def test_telescope_delay_greedy_decision(self):
        """