Ejemplo n.º 1
0
 def grad_U(z):
     grad_outputs = torch.ones(z.size(0)).type(self.dtype)
     grad = torchgrad(U(z), z, grad_outputs=grad_outputs, create_graph=True)[0]
     # gradient clipping by norm avoid numerical issue
     norm = torch.sqrt(torch.norm(grad, p=2, dim=1))
     grad = grad / norm.view(-1, 1)
     return grad.detach()
Ejemplo n.º 2
0
            def grad_U(z, modeltype=None, cond=None):
                if modeltype in ['mcvae']:
                    grad_outputs_lst = []
                    for i in range(0, len(B)):
                        grad_outputs = torch.ones(B[0])  # .cuda()
                        grad_outputs_lst.append(grad_outputs)
                else:
                    grad_outputs = torch.ones(B)  #.cuda()
                # torch.autograd.grad default returns volatile
                if not isinstance(z, list):
                    z = z.requires_grad_()
                #else:
                #  for i in range(0,len(z)):
                #    z[i] = z[i].requires_grad()

                #if modeltype in ['mcvae', 'cvae', 'vae']:

                #else:
                grad = torchgrad(U(z, modeltype=modeltype, cond=cond),
                                 z,
                                 grad_outputs=grad_outputs)[0]
                # clip by norm
                if modeltype in ['mcvae']:
                    max_ = B[0] * model.latent_dim * 100.
                else:
                    max_ = B * model.latent_dim * 100.
                grad = torch.clamp(grad, -max_, max_)
                grad.requires_grad_()
                return grad
Ejemplo n.º 3
0
 def grad_U(z):
     # grad w.r.t. outputs; mandatory in this case
     grad_outputs = torch.ones(B, dtype = batch.dtype, device = batch.device)
     grad = torchgrad(U(z), z, grad_outputs=grad_outputs)[0]
     # clip by norm
     grad = torch.clamp(grad, -B*z_size*100, B*z_size*100)
     grad.requires_grad = True
     return grad
Ejemplo n.º 4
0
 def grad_U(z):
   # grad w.r.t. outputs; mandatory in this case
   grad_outputs = torch.ones(B).cuda()
   # torch.autograd.grad default returns volatile
   grad = torchgrad(U(z), z, grad_outputs=grad_outputs)[0]
   # clip by norm
   max_ = B * model.latent_dim * 100.
   grad = torch.clamp(grad, -max_, max_)
   grad.requires_grad_()
   return grad
Ejemplo n.º 5
0
 def grad_U(z):
     # grad w.r.t. outputs; mandatory in this case
     grad_outputs = torch.ones(B).type(mdtype)
     # torch.autograd.grad default returns volatile
     grad = torchgrad(U(z), z, grad_outputs=grad_outputs)[0]
     # avoid humongous gradients
     grad = torch.clamp(grad, -10000, 10000)
     # needs variable wrapper to make differentiable
     grad = Variable(grad.data, requires_grad=True)
     return grad
Ejemplo n.º 6
0
 def grad_U(z):
     grad_outputs = torch.ones(z.size(0)).type(self.dtype)
     grad = torchgrad(U(z),
                      z,
                      grad_outputs=grad_outputs,
                      create_graph=True)[0]
     # gradient clipping avoid numerical issue
     norm = torch.sqrt(torch.norm(grad, p=2, dim=1))
     # neither grad clip methods consistently outperforms the other
     grad = grad / norm.view(-1, 1)
     # grad = torch.clamp(grad, -10000, 10000)
     return grad.detach()
Ejemplo n.º 7
0
 def grad_U(z):
     # grad w.r.t. outputs; mandatory in this case
     grad_outputs = torch.ones(B).cuda()
     # torch.autograd.grad default returns volatile
     # grad = torchgrad(U(z), z, grad_outputs=grad_outputs)[0]
     grad = torchgrad(-log_f_i(z, batch, t1),
                      z,
                      grad_outputs=grad_outputs,
                      retain_graph=False,
                      create_graph=False)[0]
     # clip by norm
     max_ = B * model_latent_dim * 100.
     grad = torch.clamp(grad, -max_, max_)
     # grad.requires_grad_()
     return grad.detach()
Ejemplo n.º 8
0
 def grad(z):
     return torchgrad(energy(z),z,grad_outputs=z.new_ones(z.shape[0]))[0]