Ejemplo n.º 1
0
    def _test_scatter_helper(self, group, group_id, rank):
        for dest in group:
            tensor = _build_tensor(dest + 1, -1)
            expected_tensor = _build_tensor(dest + 1, rank)
            if rank == dest:
                tensors = [_build_tensor(dest + 1, i) for i in group]
                dist.scatter_send(tensors, tensor, group_id)
                self.assertEqual(tensor, expected_tensor)
            else:
                dist.scatter_recv(tensor, dest, group_id)
                self.assertEqual(tensor, expected_tensor)

        self._barrier()
Ejemplo n.º 2
0
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            for i in range(0, num_tensors):
                dist.all_reduce(tensor)
dist.barrier()

if rank == 0:
    print_header("scatter")
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        tensors = [tensor for n in range(0, dist.get_num_processes())]
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            start = timer()
            for i in range(0, num_tensors):
                dist.scatter_send(tensors, tensor)
            end = timer()
            print_stats(bytes, num_tensors, end - start)
    print()
else:
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            for i in range(0, num_tensors):
                dist.scatter_recv(tensor, 0)
dist.barrier()

if rank == 0:
    print_header("gather")
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
Ejemplo n.º 3
0
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            for i in range(0, num_tensors):
                dist.all_reduce(tensor)
dist.barrier()

if rank == 0:
    print_header("scatter")
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        tensors = [tensor for n in range(0, dist.get_world_size())]
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            start = timer()
            for i in range(0, num_tensors):
                dist.scatter_send(tensors, tensor)
            end = timer()
            print_stats(bytes, num_tensors, end - start)
    print()
else:
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)
        for num_tensors in [10**n for n in range(MIN_NUM_TENSORS, MAX_NUM_TENSORS)]:
            for i in range(0, num_tensors):
                dist.scatter_recv(tensor, 0)
dist.barrier()

if rank == 0:
    print_header("gather")
    for bytes in [2**n for n in range(MIN_BYTES, MAX_BYTES)]:
        tensor = torch.ByteTensor(bytes).fill_(42)