Ejemplo n.º 1
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 weight_init=Kaiming_Normal(),
                 bias_init=Zeros()):
        """

        :param in_channels:
        :param out_channels:
        :param kernel_size:
        :param stride:
        :param padding:
        :param dilation:
        :param groups:
        :param bias:
        :param weight_init:
        :param bias_init:
        """
        super(Conv2d, self).__init__(in_channels, out_channels,
                                     _pair(kernel_size), _pair(stride),
                                     _pair(padding), _pair(dilation), groups,
                                     bias, _pair(0), weight_init, bias_init)
Ejemplo n.º 2
0
    def __init__(self,
                 in_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 out_padding=0,
                 dilation=1,
                 bias=True,
                 multiplier=1,
                 weight_init=Kaiming_Normal(),
                 bias_init=Zeros()):
        """

        :param in_channels:
        :param kernel_size:
        :param stride:
        :param padding:
        :param dilation:
        :param bias:
        :param multiplier:
        :param weight_init:
        :param bias_init:
        """
        super(DepthwiseConvTranspose2d,
              self).__init__(in_channels, in_channels * multiplier,
                             _pair(kernel_size), _pair(stride), _pair(padding),
                             _pair(dilation), in_channels, bias,
                             _pair(out_padding), weight_init, bias_init)
Ejemplo n.º 3
0
 def __init__(self,
              in_channels,
              out_channels,
              kernel_size,
              stride=1,
              padding=0,
              dilation=1,
              groups=1,
              bias=True):
     kernel_size = _pair(kernel_size)
     stride = _pair(stride)
     padding = _pair(padding)
     dilation = _pair(dilation)
     assert out_channels % 2 == 0 and out_channels > 0
     super(FlipConv2dUD,
           self).__init__(in_channels, int(out_channels / 2),
                          kernel_size, stride, padding, dilation, False,
                          _pair(0), groups, bias)
Ejemplo n.º 4
0
 def _conv_forward(self, input, weight):
     if self.padding_mode != 'zeros':
         return F.conv2d(
             F.pad(input,
                   self._reversed_padding_repeated_twice,
                   mode=self.padding_mode), weight, self.bias, self.stride,
             _pair(0), self.dilation, self.groups)
     return F.conv2d(input, weight, self.bias, self.stride, self.padding,
                     self.dilation, self.groups)
Ejemplo n.º 5
0
    def forward(self, input):
        batch_size, input_planes, input_height, input_width = input.size()
        self.kernel_size = _pair(self.kernel_size)
        self.padding = _pair(self.padding)
        self.stride = _pair(self.stride)
        kernel_ops = self.kernel_size[0] * self.kernel_size[1]

        # :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - kernel\_size[0])
        #                           / stride[0] + 1)`
        #  :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - kernel\_size[1])
        #                           / stride[1] + 1)`

        output_height = math.floor((input_height + 2 * self.padding[0] -
                                    self.kernel_size[0]) / self.stride[0] + 1)
        output_width = math.floor((input_width + 2 * self.padding[1] -
                                   self.kernel_size[1]) / self.stride[1] + 1)
        self.__flops__ = batch_size * input_planes * output_width * output_height * kernel_ops
        return super(AvgPool2d, self).forward(input)
Ejemplo n.º 6
0
 def __init__(self,
              in_channels,
              out_channels,
              kernel_size,
              stride=1,
              padding=0,
              dilation=1,
              groups=1,
              bias=True,
              padding_mode='zeros',
              p=0.5):
     kernel_size = _pair(kernel_size)
     stride = _pair(stride)
     padding = _pair(padding)
     dilation = _pair(dilation)
     super(DropConnectConv2D,
           self).__init__(in_channels, out_channels,
                          kernel_size, stride, padding, dilation, False,
                          _pair(0), groups, bias, padding_mode)
     self.dropout = nn.Dropout(p)
     self.p = p
Ejemplo n.º 7
0
    def __init__(self, kernel_size,stride=1, in_channels=None, out_channels=None,
                 padding=0, dilation=1, groups=1, bias=True, reuse_features=True,
                 weight_initializer=default_initializer,
                 bias_initializer=default_initializer
                 ):

        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.kernel_size = _pair(kernel_size)
        self.output_padding = _pair(0)
        self.bias = bias

        super(Conv2d, self).__init__(
            in_features=in_channels,
            out_features=out_channels,
            weight_initializer=weight_initializer,
            bias_initializer=bias_initializer,
            weight_allocation=self.kernel_size,
            reuse_features=reuse_features,
            bias=bias
        )
Ejemplo n.º 8
0
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        *args,
        hidden_kernel: Union[int, Tuple[int, int]],
        **kwargs,
        # XXX star-args are passed directly to Conv2d for the `input`
    ):
        # make sure the kenrel sizes are odd, and get the padding
        # XXX the only place where the `2d-ness` is hardcoded here!
        n_kernel = _pair(hidden_kernel)
        assert all(k & 1 for k in n_kernel)

        n_pad = [k >> 1 for k in n_kernel]  # stride == 1

        super().__init__()

        # input to reset and update gates, and the candidate state
        self.x_hrz = Conv2d(
            in_channels,
            3 * out_channels,
            *args,
            **kwargs,
        )

        # hidden state to reset and update gates
        self.h_rz = Conv2d(
            out_channels,
            2 * out_channels,
            n_kernel,
            stride=1,
            bias=False,
            padding=n_pad,
        )

        # hidden state to the candidate
        self.h_h = Conv2d(
            out_channels,
            out_channels,
            n_kernel,
            stride=1,
            bias=False,
            padding=n_pad,
        )