Ejemplo n.º 1
0
def train_model(model, model_name, hyperparams, device, epochs):
    '''
    
    Train Model
    
    This is a generic function to call the model's training function. 
    
    '''

    print('Beginning Training for: ', model_name)
    print('------------------------------------')
    
    results = {}
    
    if torch.cuda.device_count() > 1: 
        print("Using ", torch.cuda.device_count(), " GPUs.")
        print('------------------------------------')
        model = DataParallel(model)
        
    model = model.to(device=device)
    
    optimizer = optim.Adam(model.parameters(), betas=hyperparams['betas'], lr=hyperparams['learning_rate'], weight_decay=hyperparams['L2_reg'])
    
    lr_updater = lr_scheduler.StepLR(optimizer, hyperparams['lr_decay_epochs'], hyperparams['lr_decay'])
    
    results = train(model, optimizer, lr_updater, results, epochs=epochs)
    
    plot_results(results, model_name ,save=True)
    np.save(model_name, results)
    
    return results
Ejemplo n.º 2
0
def main():
    train_dataset = hrb_input.TrainDataset()
    val_dataset = hrb_input.ValidationDataset()
    test_dataset = hrb_input.TestDataset()

    train_loader = DataLoader(train_dataset,
                              batch_size=BATCH_SIZE,
                              shuffle=True,
                              num_workers=8,
                              pin_memory=True)
    val_loader = DataLoader(val_dataset,
                            batch_size=BATCH_SIZE,
                            shuffle=True,
                            num_workers=8,
                            pin_memory=True)
    test_loader = DataLoader(test_dataset,
                             batch_size=BATCH_SIZE,
                             num_workers=8,
                             pin_memory=True)

    model = network.resnet50(num_classes=1000)
    model = DataParallel(model, device_ids=[0, 1, 2])
    model.to(device)

    loss_func = F.cross_entropy
    optimizer = optim.Adam(model.parameters(), lr=LR)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=LR_STEPS,
                                               gamma=LR_GAMMA)

    best_loss = 100.0
    patience_counter = 0

    for epoch in range(EPOCHS):

        train(model, optimizer, loss_func, train_loader, epoch)
        val_loss = validate(model, loss_func, val_loader)

        if val_loss < best_loss:
            torch.save(model, MODEL_PATH)
            print('Saving improved model')
            print()
            best_loss = val_loss
            patience_counter = 0
        else:
            patience_counter += 1
            print('Epoch(s) since best model: ', patience_counter)
            print()
        if patience_counter >= EARLY_STOPPING_EPOCHS:
            print('Early Stopping ...')
            print()
            break
        scheduler.step()

    print('Predicting labels from best trained model')
    predict(test_loader)
Ejemplo n.º 3
0
class nnUNetTrainerV2CascadeFullRes_DP(nnUNetTrainerV2CascadeFullRes):
    def __init__(self,
                 plans_file,
                 fold,
                 output_folder=None,
                 dataset_directory=None,
                 batch_dice=True,
                 stage=None,
                 unpack_data=True,
                 deterministic=True,
                 num_gpus=1,
                 distribute_batch_size=False,
                 fp16=False,
                 previous_trainer="nnUNetTrainerV2_DP"):
        super().__init__(plans_file, fold, output_folder, dataset_directory,
                         batch_dice, stage, unpack_data, deterministic,
                         previous_trainer, fp16)
        self.init_args = (plans_file, fold, output_folder, dataset_directory,
                          batch_dice, stage, unpack_data, deterministic,
                          num_gpus, distribute_batch_size, fp16,
                          previous_trainer)

        self.num_gpus = num_gpus
        self.distribute_batch_size = distribute_batch_size
        self.dice_do_BG = False
        self.dice_smooth = 1e-5
        if self.output_folder is not None:
            task = self.output_folder.split("/")[-3]
            plans_identifier = self.output_folder.split("/")[-2].split(
                "__")[-1]
            folder_with_segs_prev_stage = join(
                network_training_output_dir, "3d_lowres", task,
                previous_trainer + "__" + plans_identifier, "pred_next_stage")
            self.folder_with_segs_from_prev_stage = folder_with_segs_prev_stage
        else:
            self.folder_with_segs_from_prev_stage = None
        print(self.folder_with_segs_from_prev_stage)

    def get_basic_generators(self):
        self.load_dataset()
        self.do_split()
        if self.threeD:
            dl_tr = DataLoader3D(self.dataset_tr,
                                 self.basic_generator_patch_size,
                                 self.patch_size,
                                 self.batch_size,
                                 True,
                                 oversample_foreground_percent=self.
                                 oversample_foreground_percent,
                                 pad_mode="constant",
                                 pad_sides=self.pad_all_sides)
            dl_val = DataLoader3D(self.dataset_val,
                                  self.patch_size,
                                  self.patch_size,
                                  self.batch_size,
                                  True,
                                  oversample_foreground_percent=self.
                                  oversample_foreground_percent,
                                  pad_mode="constant",
                                  pad_sides=self.pad_all_sides)
        else:
            raise NotImplementedError("2D has no cascade")

        return dl_tr, dl_val

    def process_plans(self, plans):
        super().process_plans(plans)
        if not self.distribute_batch_size:
            self.batch_size = self.num_gpus * self.plans['plans_per_stage'][
                self.stage]['batch_size']
        else:
            if self.batch_size < self.num_gpus:
                print(
                    "WARNING: self.batch_size < self.num_gpus. Will not be able to use the GPUs well"
                )
            elif self.batch_size % self.num_gpus != 0:
                print(
                    "WARNING: self.batch_size % self.num_gpus != 0. Will not be able to use the GPUs well"
                )

    def initialize(self, training=True, force_load_plans=False):
        if not self.was_initialized:
            if force_load_plans or (self.plans is None):
                self.load_plans_file()

            self.process_plans(self.plans)
            self.setup_DA_params()

            ################# Here we wrap the loss for deep supervision ############
            net_numpool = len(self.net_num_pool_op_kernel_sizes)
            weights = np.array([1 / (2**i) for i in range(net_numpool)])
            mask = np.array([
                True if i < net_numpool - 1 else False
                for i in range(net_numpool)
            ])
            weights[~mask] = 0
            weights = weights / weights.sum()
            self.loss_weights = weights
            ################# END ###################

            self.folder_with_preprocessed_data = join(
                self.dataset_directory,
                self.plans['data_identifier'] + "_stage%d" % self.stage)

            if training:
                if not isdir(self.folder_with_segs_from_prev_stage):
                    raise RuntimeError(
                        "Cannot run final stage of cascade. Run corresponding 3d_lowres first and predict the "
                        "segmentations for the next stage")

                self.dl_tr, self.dl_val = self.get_basic_generators()
                if self.unpack_data:
                    print("unpacking dataset")
                    unpack_dataset(self.folder_with_preprocessed_data)
                    print("done")
                else:
                    print(
                        "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
                        "will wait all winter for your model to finish!")

                self.tr_gen, self.val_gen = get_moreDA_augmentation(
                    self.dl_tr,
                    self.dl_val,
                    self.data_aug_params['patch_size_for_spatialtransform'],
                    self.data_aug_params,
                    deep_supervision_scales=self.deep_supervision_scales,
                    pin_memory=self.pin_memory)
                self.print_to_log_file("TRAINING KEYS:\n %s" %
                                       (str(self.dataset_tr.keys())),
                                       also_print_to_console=False)
                self.print_to_log_file("VALIDATION KEYS:\n %s" %
                                       (str(self.dataset_val.keys())),
                                       also_print_to_console=False)
            else:
                pass

            self.initialize_network()
            self.initialize_optimizer_and_scheduler()

            assert isinstance(self.network,
                              (SegmentationNetwork, DataParallel))
        else:
            self.print_to_log_file(
                'self.was_initialized is True, not running self.initialize again'
            )

        self.was_initialized = True

    def initialize_network(self):
        """
        replace genericUNet with the implementation of above for super speeds
        """
        if self.threeD:
            conv_op = nn.Conv3d
            dropout_op = nn.Dropout3d
            norm_op = nn.InstanceNorm3d

        else:
            conv_op = nn.Conv2d
            dropout_op = nn.Dropout2d
            norm_op = nn.InstanceNorm2d

        norm_op_kwargs = {'eps': 1e-5, 'affine': True}
        dropout_op_kwargs = {'p': 0, 'inplace': True}
        net_nonlin = nn.LeakyReLU
        net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
        self.network = Generic_UNet_DP(
            self.num_input_channels, self.base_num_features, self.num_classes,
            len(self.net_num_pool_op_kernel_sizes), self.conv_per_stage, 2,
            conv_op, norm_op, norm_op_kwargs, dropout_op,
            dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, True, False,
            InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes,
            self.net_conv_kernel_sizes, False, True, True)
        if torch.cuda.is_available():
            self.network.cuda()
        self.network.inference_apply_nonlin = softmax_helper

    def run_training(self):
        self.maybe_update_lr(self.epoch)
        # amp must be initialized before DP
        ds = self.network.do_ds
        self.network.do_ds = True
        # self.network = DataParallel(self.network, tuple(range(self.num_gpus)), )
        self.network = DataParallel(self.network,
                                    device_ids=list(range(0, self.num_gpus)))

        ret = nnUNetTrainer.run_training(self)
        self.network = self.network.module
        self.network.do_ds = ds
        return ret

    def run_iteration(self,
                      data_generator,
                      do_backprop=True,
                      run_online_evaluation=False):
        data_dict = next(data_generator)
        data = data_dict['data']
        target = data_dict['target']

        data = maybe_to_torch(data)
        target = maybe_to_torch(target)

        if torch.cuda.is_available():
            data = to_cuda(data)
            target = to_cuda(target)

        self.optimizer.zero_grad()

        if self.fp16:
            with autocast():
                ret = self.network(data,
                                   target,
                                   return_hard_tp_fp_fn=run_online_evaluation)
                if run_online_evaluation:
                    ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
                    self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
                else:
                    ces, tps, fps, fns = ret
                del data, target
                l = self.compute_loss(ces, tps, fps, fns)

            if do_backprop:
                self.amp_grad_scaler.scale(l).backward()
                self.amp_grad_scaler.unscale_(self.optimizer)
                clip_grad_norm_(self.network.parameters(), 12)
                self.amp_grad_scaler.step(self.optimizer)
                self.amp_grad_scaler.update()
        else:
            ret = self.network(data,
                               target,
                               return_hard_tp_fp_fn=run_online_evaluation)
            if run_online_evaluation:
                ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
                self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
            else:
                ces, tps, fps, fns = ret
            del data, target
            l = self.compute_loss(ces, tps, fps, fns)

            if do_backprop:
                l.backward()
                clip_grad_norm_(self.network.parameters(), 12)
                self.optimizer.step()

        return l.detach().cpu().numpy()

    def run_online_evaluation(self, tp_hard, fp_hard, fn_hard):
        tp_hard = tp_hard.detach().cpu().numpy().mean(0)
        fp_hard = fp_hard.detach().cpu().numpy().mean(0)
        fn_hard = fn_hard.detach().cpu().numpy().mean(0)
        self.online_eval_foreground_dc.append(
            list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8)))
        self.online_eval_tp.append(list(tp_hard))
        self.online_eval_fp.append(list(fp_hard))
        self.online_eval_fn.append(list(fn_hard))

    def compute_loss(self, ces, tps, fps, fns):
        loss = None
        for i in range(len(ces)):
            if not self.dice_do_BG:
                tp = tps[i][:, 1:]
                fp = fps[i][:, 1:]
                fn = fns[i][:, 1:]
            else:
                tp = tps[i]
                fp = fps[i]
                fn = fns[i]

            if self.batch_dice:
                tp = tp.sum(0)
                fp = fp.sum(0)
                fn = fn.sum(0)
            else:
                pass

            nominator = 2 * tp + self.dice_smooth
            denominator = 2 * tp + fp + fn + self.dice_smooth

            dice_loss = (-nominator / denominator).mean()
            if loss is None:
                loss = self.loss_weights[i] * (ces[i].mean() + dice_loss)
            else:
                loss += self.loss_weights[i] * (ces[i].mean() + dice_loss)
        return loss
Ejemplo n.º 4
0
class nnUNetTrainerV2_DP(nnUNetTrainerV2):
    def __init__(self,
                 plans_file,
                 fold,
                 output_folder=None,
                 dataset_directory=None,
                 batch_dice=True,
                 stage=None,
                 unpack_data=True,
                 deterministic=True,
                 num_gpus=1,
                 distribute_batch_size=False,
                 fp16=False):
        super(nnUNetTrainerV2_DP,
              self).__init__(plans_file, fold, output_folder,
                             dataset_directory, batch_dice, stage, unpack_data,
                             deterministic, fp16)
        self.init_args = (plans_file, fold, output_folder, dataset_directory,
                          batch_dice, stage, unpack_data, deterministic,
                          num_gpus, distribute_batch_size, fp16)
        self.num_gpus = num_gpus
        self.distribute_batch_size = distribute_batch_size
        self.dice_smooth = 1e-5
        self.dice_do_BG = False
        self.loss = None
        self.loss_weights = None

    def setup_DA_params(self):
        super(nnUNetTrainerV2_DP, self).setup_DA_params()
        self.data_aug_params['num_threads'] = 8 * self.num_gpus

    def process_plans(self, plans):
        super(nnUNetTrainerV2_DP, self).process_plans(plans)
        if not self.distribute_batch_size:
            self.batch_size = self.num_gpus * self.plans['plans_per_stage'][
                self.stage]['batch_size']
        else:
            if self.batch_size < self.num_gpus:
                print(
                    "WARNING: self.batch_size < self.num_gpus. Will not be able to use the GPUs well"
                )
            elif self.batch_size % self.num_gpus != 0:
                print(
                    "WARNING: self.batch_size % self.num_gpus != 0. Will not be able to use the GPUs well"
                )

    def initialize(self, training=True, force_load_plans=False):
        """
        - replaced get_default_augmentation with get_moreDA_augmentation
        - only run this code once
        - loss function wrapper for deep supervision

        :param training:
        :param force_load_plans:
        :return:
        """
        if not self.was_initialized:
            os.makedirs(self.output_folder, exist_ok=True)

            if force_load_plans or (self.plans is None):
                self.load_plans_file()

            self.process_plans(self.plans)

            self.setup_DA_params()

            ################# Here configure the loss for deep supervision ############
            net_numpool = len(self.net_num_pool_op_kernel_sizes)
            weights = np.array([1 / (2**i) for i in range(net_numpool)])
            mask = np.array([
                True if i < net_numpool - 1 else False
                for i in range(net_numpool)
            ])
            weights[~mask] = 0
            weights = weights / weights.sum()
            self.loss_weights = weights
            ################# END ###################

            self.folder_with_preprocessed_data = join(
                self.dataset_directory,
                self.plans['data_identifier'] + "_stage%d" % self.stage)
            if training:
                self.dl_tr, self.dl_val = self.get_basic_generators()
                if self.unpack_data:
                    print("unpacking dataset")
                    unpack_dataset(self.folder_with_preprocessed_data)
                    print("done")
                else:
                    print(
                        "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
                        "will wait all winter for your model to finish!")

                self.tr_gen, self.val_gen = get_moreDA_augmentation(
                    self.dl_tr,
                    self.dl_val,
                    self.data_aug_params['patch_size_for_spatialtransform'],
                    self.data_aug_params,
                    deep_supervision_scales=self.deep_supervision_scales,
                    pin_memory=self.pin_memory)
                self.print_to_log_file("TRAINING KEYS:\n %s" %
                                       (str(self.dataset_tr.keys())),
                                       also_print_to_console=False)
                self.print_to_log_file("VALIDATION KEYS:\n %s" %
                                       (str(self.dataset_val.keys())),
                                       also_print_to_console=False)
            else:
                pass

            self.initialize_network()
            self.initialize_optimizer_and_scheduler()

            assert isinstance(self.network,
                              (SegmentationNetwork, DataParallel))
        else:
            self.print_to_log_file(
                'self.was_initialized is True, not running self.initialize again'
            )
        self.was_initialized = True

    def initialize_network(self):
        """
        replace genericUNet with the implementation of above for super speeds
        """
        if self.threeD:
            conv_op = nn.Conv3d
            dropout_op = nn.Dropout3d
            norm_op = nn.InstanceNorm3d

        else:
            conv_op = nn.Conv2d
            dropout_op = nn.Dropout2d
            norm_op = nn.InstanceNorm2d

        norm_op_kwargs = {'eps': 1e-5, 'affine': True}
        dropout_op_kwargs = {'p': 0, 'inplace': True}
        net_nonlin = nn.LeakyReLU
        net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
        self.network = Generic_UNet_DP(
            self.num_input_channels, self.base_num_features, self.num_classes,
            len(self.net_num_pool_op_kernel_sizes), self.conv_per_stage, 2,
            conv_op, norm_op, norm_op_kwargs, dropout_op,
            dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, True, False,
            InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes,
            self.net_conv_kernel_sizes, False, True, True)
        if torch.cuda.is_available():
            self.network.cuda()
        self.network.inference_apply_nonlin = softmax_helper

    def initialize_optimizer_and_scheduler(self):
        assert self.network is not None, "self.initialize_network must be called first"
        self.optimizer = torch.optim.SGD(self.network.parameters(),
                                         self.initial_lr,
                                         weight_decay=self.weight_decay,
                                         momentum=0.99,
                                         nesterov=True)
        self.lr_scheduler = None

    def run_training(self):
        self.maybe_update_lr(self.epoch)

        # amp must be initialized before DP

        ds = self.network.do_ds
        self.network.do_ds = True
        self.network = DataParallel(
            self.network,
            tuple(range(self.num_gpus)),
        )
        ret = nnUNetTrainer.run_training(self)
        self.network = self.network.module
        self.network.do_ds = ds
        return ret

    def run_iteration(self,
                      data_generator,
                      do_backprop=True,
                      run_online_evaluation=False):
        data_dict = next(data_generator)
        data = data_dict['data']
        target = data_dict['target']

        data = maybe_to_torch(data)
        target = maybe_to_torch(target)

        if torch.cuda.is_available():
            data = to_cuda(data)
            target = to_cuda(target)

        self.optimizer.zero_grad()

        if self.fp16:
            with autocast():
                ret = self.network(data,
                                   target,
                                   return_hard_tp_fp_fn=run_online_evaluation)
                if run_online_evaluation:
                    ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
                    self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
                else:
                    ces, tps, fps, fns = ret
                del data, target
                l = self.compute_loss(ces, tps, fps, fns)

            if do_backprop:
                self.amp_grad_scaler.scale(l).backward()
                self.amp_grad_scaler.unscale_(self.optimizer)
                torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12)
                self.amp_grad_scaler.step(self.optimizer)
                self.amp_grad_scaler.update()
        else:
            ret = self.network(data,
                               target,
                               return_hard_tp_fp_fn=run_online_evaluation)
            if run_online_evaluation:
                ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
                self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
            else:
                ces, tps, fps, fns = ret
            del data, target
            l = self.compute_loss(ces, tps, fps, fns)

            if do_backprop:
                l.backward()
                torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12)
                self.optimizer.step()

        return l.detach().cpu().numpy()

    def run_online_evaluation(self, tp_hard, fp_hard, fn_hard):
        tp_hard = tp_hard.detach().cpu().numpy().mean(0)
        fp_hard = fp_hard.detach().cpu().numpy().mean(0)
        fn_hard = fn_hard.detach().cpu().numpy().mean(0)
        self.online_eval_foreground_dc.append(
            list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8)))
        self.online_eval_tp.append(list(tp_hard))
        self.online_eval_fp.append(list(fp_hard))
        self.online_eval_fn.append(list(fn_hard))

    def compute_loss(self, ces, tps, fps, fns):
        # we now need to effectively reimplement the loss
        loss = None
        for i in range(len(ces)):
            if not self.dice_do_BG:
                tp = tps[i][:, 1:]
                fp = fps[i][:, 1:]
                fn = fns[i][:, 1:]
            else:
                tp = tps[i]
                fp = fps[i]
                fn = fns[i]

            if self.batch_dice:
                tp = tp.sum(0)
                fp = fp.sum(0)
                fn = fn.sum(0)
            else:
                pass

            nominator = 2 * tp + self.dice_smooth
            denominator = 2 * tp + fp + fn + self.dice_smooth

            dice_loss = (-nominator / denominator).mean()
            if loss is None:
                loss = self.loss_weights[i] * (ces[i].mean() + dice_loss)
            else:
                loss += self.loss_weights[i] * (ces[i].mean() + dice_loss)
        ###########
        return loss
Ejemplo n.º 5
0
def train(args, pt_dir, chkpt_path, trainloader, devloader, writer, logger, hp,
          hp_str):

    model = get_SLOCountNet(hp).cuda()

    print("FOV: {}", model.get_fov(hp.features.n_fft))
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    print("N_parameters : {}".format(params))
    model = DataParallel(model)

    if hp.train.optimizer == 'adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=hp.train.adam)
    else:
        raise Exception("%s optimizer not supported" % hp.train.optimizer)

    epoch = 0
    best_loss = np.inf

    if chkpt_path is not None:
        logger.info("Resuming from checkpoint: %s" % chkpt_path)
        checkpoint = torch.load(chkpt_path)
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        epoch = checkpoint['step']

        # will use new given hparams.
        if hp_str != checkpoint['hp_str']:
            logger.warning("New hparams is different from checkpoint.")
    else:
        logger.info("Starting new training run")

    try:

        for epoch in range(epoch, hp.train.n_epochs):

            vad_scores = Binarymetrics.BinaryMeter()  # activity scores
            vod_scores = Binarymetrics.BinaryMeter()  # overlap scores
            count_scores = Binarymetrics.MultiMeter()  # Countnet scores

            model.train()
            tot_loss = 0

            with tqdm(trainloader) as t:
                t.set_description("Epoch: {}".format(epoch))

                for count, batch in enumerate(trainloader):

                    features, labels = batch
                    features = features.cuda()
                    labels = labels.cuda()

                    preds = model(features)

                    loss = criterion(preds, labels)

                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    # compute proper metrics for VAD
                    loss = loss.item()

                    if loss > 1e8 or math.isnan(loss):  # check if exploded
                        logger.error("Loss exploded to %.02f at step %d!" %
                                     (loss, epoch))
                        raise Exception("Loss exploded")

                    VADpreds = torch.sum(torch.exp(preds[:, 1:5, :]),
                                         dim=1).unsqueeze(1)
                    VADlabels = torch.sum(labels[:, 1:5, :],
                                          dim=1).unsqueeze(1)
                    vad_scores.update(VADpreds, VADlabels)

                    VODpreds = torch.sum(torch.exp(preds[:, 2:5, :]),
                                         dim=1).unsqueeze(1)
                    VODlabels = torch.sum(labels[:, 2:5, :],
                                          dim=1).unsqueeze(1)
                    vod_scores.update(VODpreds, VODlabels)

                    count_scores.update(
                        torch.argmax(torch.exp(preds), 1).unsqueeze(1),
                        torch.argmax(labels, 1).unsqueeze(1))

                    tot_loss += loss

                    vad_fa = vad_scores.get_fa().item()
                    vad_miss = vad_scores.get_miss().item()
                    vad_precision = vad_scores.get_precision().item()
                    vad_recall = vad_scores.get_recall().item()
                    vad_matt = vad_scores.get_matt().item()
                    vad_f1 = vad_scores.get_f1().item()
                    vad_tp = vad_scores.tp.item()
                    vad_tn = vad_scores.tn.item()
                    vad_fp = vad_scores.fp.item()
                    vad_fn = vad_scores.fn.item()

                    vod_fa = vod_scores.get_fa().item()
                    vod_miss = vod_scores.get_miss().item()
                    vod_precision = vod_scores.get_precision().item()
                    vod_recall = vod_scores.get_recall().item()
                    vod_matt = vod_scores.get_matt().item()
                    vod_f1 = vod_scores.get_f1().item()
                    vod_tp = vod_scores.tp.item()
                    vod_tn = vod_scores.tn.item()
                    vod_fp = vod_scores.fp.item()
                    vod_fn = vod_scores.fn.item()

                    count_fa = count_scores.get_accuracy().item()
                    count_miss = count_scores.get_miss().item()
                    count_precision = count_scores.get_precision().item()
                    count_recall = count_scores.get_recall().item()
                    count_matt = count_scores.get_matt().item()
                    count_f1 = count_scores.get_f1().item()
                    count_tp = count_scores.get_tp().item()
                    count_tn = count_scores.get_tn().item()
                    count_fp = count_scores.get_fp().item()
                    count_fn = count_scores.get_fn().item()

                    t.set_postfix(loss=tot_loss / (count + 1),
                                  vad_miss=vad_miss,
                                  vad_fa=vad_fa,
                                  vad_prec=vad_precision,
                                  vad_recall=vad_recall,
                                  vad_matt=vad_matt,
                                  vad_f1=vad_f1,
                                  vod_miss=vod_miss,
                                  vod_fa=vod_fa,
                                  vod_prec=vod_precision,
                                  vod_recall=vod_recall,
                                  vod_matt=vod_matt,
                                  vod_f1=vod_f1,
                                  count_miss=count_miss,
                                  count_fa=count_fa,
                                  count_prec=count_precision,
                                  count_recall=count_recall,
                                  count_matt=count_matt,
                                  count_f1=count_f1)
                    t.update()

            writer.log_metrics("train_vad", loss, vad_fa, vad_miss, vad_recall,
                               vad_precision, vad_f1, vad_matt, vad_tp, vad_tn,
                               vad_fp, vad_fn, epoch)
            writer.log_metrics("train_vod", loss, vod_fa, vod_miss, vod_recall,
                               vod_precision, vod_f1, vod_matt, vod_tp, vod_tn,
                               vod_fp, vod_fn, epoch)
            writer.log_metrics("train_count", loss, count_fa, count_miss,
                               count_recall, count_precision, count_f1,
                               count_matt, count_tp, count_tn, count_fp,
                               count_fn, epoch)
            # end epoch save model and validate it

            val_loss = validate(hp, model, devloader, writer, epoch)

            if hp.train.save_best == 0:
                save_path = os.path.join(pt_dir, 'chkpt_%d.pt' % epoch)
                torch.save(
                    {
                        'model': model.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'step': epoch,
                        'hp_str': hp_str,
                    }, save_path)
                logger.info("Saved checkpoint to: %s" % save_path)

            else:
                if val_loss < best_loss:  # save only when best
                    best_loss = val_loss
                    save_path = os.path.join(pt_dir, 'chkpt_%d.pt' % epoch)
                    torch.save(
                        {
                            'model': model.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'step': epoch,
                            'hp_str': hp_str,
                        }, save_path)
                logger.info("Saved checkpoint to: %s" % save_path)

        return best_loss

    except Exception as e:
        logger.info("Exiting due to exception: %s" % e)
        traceback.print_exc()
Ejemplo n.º 6
0
                                         state=trk_state)
     loss_j = model.module.loss(output,
                                frame_data,
                                verbose=print_flag)
     losses.append(loss_j)
     # print(model._cs_pos[0].weight.mean(), 'after')
 loss, logs, logh = parse_losses(losses)
 if isinstance(loss, torch.Tensor):
     # for name, one in model.named_parameters():
     #     if one.grad is not None:
     #         print(name, one.grad.mean())
     loss.backward()
     # for name, one in model.named_parameters():
     #     if one.grad is not None:
     #         print(name, one.grad.mean())
     clip_grad_norm_(model.parameters(), 1)
     opt.step()
 # print(model._cs_pos[0].weight.mean(), 'stepped')
 lr = lr_scheduler.get_last_lr()[0]
 if print_flag:
     print(
         'epoch %d (outer %d inner %d [%d:%d]) iter %d/%d: lr %.6f'
         % (lr_scheduler.last_epoch, eo, e, second, third, i,
            len(dl), float(lr)))
     print('\t', end='')
     for k in logs:
         print('.%s: %.6f(%.6f), ' % (k, logs[k], logh[k]),
               end='')
     print(' loss %.6f' % float(loss))
     for j in range(len(losses)):
         print('\tstep %d;' % j, end='')
Ejemplo n.º 7
0
def stage1_train(args):
    logger = init_logger(args)
    if args.summary:
        summary_writer = SummaryWriter(args.s1_summary_path)
    dataset = Birds(args.data_dir, split='train', im_size=64)
    dataloader = DataLoader(dataset, batch_size=args.s1_batch_size, shuffle=True, num_workers=8, drop_last=True)
    generator = Stage1Generator(args.txt_embedding_dim, args.c_dim, args.z_dim, args.gf_dim).cuda()
    print('generator={}'.format(generator))
    discriminator = Stage1Discriminator(args.df_dim, args.c_dim).cuda()
    print('discriminator={}'.format(discriminator))
    device_ids = list(range(torch.cuda.device_count()))
    generator = DataParallel(generator, device_ids)
    discriminator = DataParallel(discriminator, device_ids)
    g_parameters = list(filter(lambda f: f.requires_grad, generator.parameters()))
    d_parameters = list(filter(lambda f: f.requires_grad, discriminator.parameters()))
    g_optimizer = torch.optim.Adam(g_parameters, args.lr, betas=(0.5, 0.999))
    d_optimizer = torch.optim.Adam(d_parameters, args.lr, betas=(0.5, 0.999))
    r_labels = torch.ones((args.s1_batch_size,), device='cuda:0')
    f_labels = torch.zeros((args.s1_batch_size,), device='cuda:0')
    criterion = nn.BCELoss()
    cur_lr = args.lr
    for epoch in range(args.total_epoch):
        for idx, (r_imgs, txt_embeddings) in enumerate(dataloader):
            r_imgs = r_imgs.cuda()
            txt_embeddings = txt_embeddings.cuda()
            # discriminator
            noise = torch.zeros((args.s1_batch_size, args.z_dim), device='cuda:0').normal_()
            x, mu, logvar = generator(txt_embeddings, noise)
            d_loss, r_loss, w_loss, f_loss = discriminator_loss(discriminator, r_imgs, x.detach(), mu.detach(), r_labels, f_labels, criterion)
            d_optimizer.zero_grad()
            d_loss.backward()
            d_optimizer.step()
            # generator
            noise = torch.zeros((args.s1_batch_size, args.z_dim), device='cuda:0').normal_()
            x, mu, logvar = generator(txt_embeddings, noise)
            logits = discriminator(mu.detach(), x)
            g_loss = criterion(logits, r_labels)
            kl_loss_ = kl_loss(mu, logvar)
            g_loss += kl_loss_
            g_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()
            if args.summary and idx % args.summary_iters == 0 and idx > 0:
                summary_writer.add_scalar('d_loss', g_loss.item())
                summary_writer.add_scalar('r_loss', r_loss.item())
                summary_writer.add_scalar('w_loss', w_loss.item())
                summary_writer.add_scalar('f_loss', f_loss.item())
                summary_writer.add_scalar('g_loss', g_loss.item())
                summary_writer.add_scalar('kl_loss', kl_loss.item())
        if epoch % args.lr_decay_every_epoch == 0 and epoch > 0:
            logger.info(f'lr decay: {cur_lr}')
            cur_lr *= args.lr_decay_ratio
            g_optimizer = torch.optim.Adam(g_parameters, cur_lr, betas=(0.5, 0.999))
            d_optimizer = torch.optim.Adam(d_parameters, cur_lr, betas=(0.5, 0.999))
        if epoch % args.display_epoch == 0 and epoch > 0:
            logger.info(f'epoch:{epoch}, lr={cur_lr}, d_loss={d_loss}, r_loss={r_loss}, w_loss={w_loss}, f_loss={f_loss}, g_loss={g_loss}, kl_loss={kl_loss_}')
        if epoch % args.checkpoint_epoch == 0 and epoch > 0:
            if not os.path.isdir(args.s1_checkpoint_dir):
                os.makedirs(args.s1_checkpoint_dir)
            logger.info(f'saving checkpoints_{epoch}')
            torch.save(generator.state_dict(), os.path.join(args.s1_checkpoint_dir, f'generator_epoch_{epoch}.pth'))
            torch.save(discriminator.state_dict(), os.path.join(args.s1_checkpoint_dir, f'discriminator_epoch_{epoch}.pth'))
    torch.save(generator.state_dict(), os.path.join(args.s1_checkpoint_dir, 'generator.pth'))
    torch.save(generator.state_dict(), os.path.join(args.s1_checkpoint_dir, 'discriminator.pth'))
    if args.summary:
        summary_writer.close()
Ejemplo n.º 8
0
def neuralwarp_train(**kwargs):
    # 多尺度图片训练 396+
    print(kwargs)
    #print("Mask == 1")

    with open(kwargs['params']) as f:
        params = json.load(f)
    if kwargs['manner'] == 'train':
        params['is_train'] = True
    else:
        params['is_train'] = False
    params['batch_size'] = kwargs['batch_size']
    if torch.cuda.device_count() > 1:
        print("-------------------Parallel_GPU_Train--------------------------")
        parallel = True
    else:
        print("------------------Single_GPU_Train----------------------")
        parallel = False
    opt.feature = 'cqt'
    opt.notes = 'SoftDTW'
    opt.model = 'SoftDTW'
    opt.batch_size = 'batch_size'

    os.environ["CUDA_VISIBLE_DEVICES"] = str(kwargs["Device"])
    opt.Device=kwargs["Device"]
    #device_ids = [2]
    opt._parse(kwargs)

    model = getattr(models, opt.model)(params)

    p = 'check_points/' + model.model_name + opt.notes
    #f = os.path.join(p, "0620_07:05:30.pth")#使用Neural_dtw目前最优 0620_07:05:30.pth cover80 map:0.705113267654046 0.08125 7.96875
    #f = os.path.join(p, "0620_17:37:35.pth")
    #f = os.path.join(p, "0621_22:42:59.pth")#NeuralDTW_Milti_Metix_res 0622_16:33:07.pth 0621_22:42:59.pth
    #f = os.path.join(p, "0628_17:00:52.pth")#0628_17:00:52.pth  FCN
    #f = os.path.join(p,"0623_16:01:05.pth") #3seq
    #f = os.path.join(p,"0630_07:59:56.pth")#VGG11 0630_01:10:15.pth 0630_07:59:56.pth
    if  kwargs['model'] == 'NeuralDTW_CNN_Mask_dilation_SPP':
        f = os.path.join(p,"0704_19:58:25.pth")
    elif kwargs['model'] == 'NeuralDTW_CNN_Mask_dilation_SPP2':
        f = os.path.join(p,"0709_00:31:23.pth")
    elif kwargs['model'] == 'NeuralDTW_CNN_Mask_dilation':
        f = os.path.join(p,"0704_06:40:41.pth")
    opt.load_model_path = f
    if kwargs['model'] != 'NeuralDTW' and kwargs['manner'] != 'train':
        if opt.load_latest is True:
            model.load_latest(opt.notes)
        elif opt.load_model_path:
            print("load_model:",opt.load_model_path)
            model.load(opt.load_model_path)
    
    if parallel == True:
        model = DataParallel(model)
    model.to(opt.device)
    torch.multiprocessing.set_sharing_strategy('file_system')
    # step2: data
    out_length =400
    if kwargs['model'] == 'NeuralDTW_CNN_Mask_300':
        out_length = 300
    if kwargs['model'] == 'NeuralDTW_CNN_Mask_spp':
        train_data0 = triplet_CQT(out_length=200, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
        train_data1 = triplet_CQT(out_length=300, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
        train_data2 = triplet_CQT(out_length=400, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
    else:
        train_data0 = triplet_CQT(out_length=out_length, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
        train_data1 = triplet_CQT(out_length=out_length, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
        train_data2 = triplet_CQT(out_length=out_length, is_label=kwargs['is_label'], is_random=kwargs['is_random'])
    val_data80 = CQT('songs80', out_length=kwargs['test_length'])
    val_data = CQT('songs350', out_length=kwargs['test_length'])
    val_data_marukars = CQT('Mazurkas',out_length=kwargs['test_length'])
    
    train_dataloader0 = DataLoader(train_data0, opt.batch_size, shuffle=True, num_workers=opt.num_workers)
    train_dataloader1 = DataLoader(train_data1, opt.batch_size, shuffle=True, num_workers=opt.num_workers)
    train_dataloader2 = DataLoader(train_data2, opt.batch_size, shuffle=True, num_workers=opt.num_workers)
    val_dataloader80 = DataLoader(val_data80, 1, shuffle=False, num_workers=1)
    val_dataloader = DataLoader(val_data, 1, shuffle=False, num_workers=1)
    val_dataloader_marukars = DataLoader(val_data_marukars,1, shuffle=False, num_workers=1)
    if kwargs['manner'] == 'test':
        # val_slow(model, val_dataloader, style='null')
        val_slow_batch(model,val_dataloader_marukars, batch=100, is_dis=kwargs['zo'])
    elif kwargs['manner'] == 'visualize':
        visualize(model, val_dataloader80)
    elif kwargs['manner'] == 'mul_test':
        p = 'check_points/' + model.model_name + opt.notes
        l = sorted(os.listdir(p))[: 20]
        best_MAP, MAP = 0, 0
        for f in l:
            f = os.path.join(p, f)
            model.load(f)
            model.to(opt.device)
            MAP += val_slow_batch(model, val_dataloader, batch=400, is_dis=kwargs['zo'])
            MAP += val_slow_batch(model, val_dataloader80, batch=400, is_dis=kwargs['zo'])
            if MAP > best_MAP:
                print('--best result--')
                best_MAP = MAP
            MAP = 0
    else:
        # step3: criterion and optimizer
        be = torch.nn.BCELoss()

        lr = opt.lr
        optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=opt.weight_decay)

        # if parallel is True:
        #     optimizer = torch.optim.Adam(model.module.parameters(), lr=lr, weight_decay=opt.weight_decay)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=10, verbose=True, min_lr=5e-6)
        # step4: train
        best_MAP = 0
        for epoch in range(opt.max_epoch):
            running_loss = 0
            num = 0
            for ii, ((a0, p0, n0, la0, lp0, ln0), (a1, p1, n1, la1, lp1, ln1), (a2, p2, n2, la2, lp2, ln2)) in tqdm(
                    enumerate(zip(train_dataloader0, train_dataloader1, train_dataloader2))):
                # for ii, (a2, p2, n2) in tqdm(enumerate(train_dataloader2)):
                for flag in range(3):
                    if flag == 0:
                        a, p, n, la, lp, ln = a0, p0, n0, la0, lp0, ln0
                    elif flag == 1:
                        a, p, n, la, lp, ln = a1, p1, n1, la1, lp1, ln1
                    else:
                        a, p, n, la, lp, ln = a2, p2, n2, la2, lp2, ln2
                    B, _, _, _ = a.shape
                    if kwargs["zo"] == True:
                        target = torch.cat((torch.zeros(B), torch.ones(B))).cuda()
                    else:
                        target = torch.cat((torch.ones(B), torch.zeros(B))).cuda()
                    # train model
                    a = a.requires_grad_().to(opt.device)
                    p = p.requires_grad_().to(opt.device)
                    n = n.requires_grad_().to(opt.device)

                    optimizer.zero_grad()
                    pred = model(a, p, n)
                    pred = pred.squeeze(1)   
                    loss = be(pred, target)
                    loss.backward()
                    optimizer.step()

                    running_loss += loss.item()
                    num += a.shape[0]

                if ii % 5000 == 0:
                    running_loss /= num
                    print("train_loss:",running_loss)
                
                    MAP = 0
                    print("Youtube350:")
                    MAP += val_slow_batch(model, val_dataloader, batch=1    , is_dis=kwargs['zo'])
                    print("CoverSong80:")
                    MAP += val_slow_batch(model, val_dataloader80, batch=1, is_dis=kwargs['zo'])
                    # print("Marukars:")
                    # MAP += val_slow_batch(model, val_dataloader_marukars, batch=100, is_dis=kwargs['zo'])
                    if MAP > best_MAP:
                        best_MAP = MAP
                        print('*****************BEST*****************')
                    if kwargs['save_model'] == True:
                        if parallel:
                            model.module.save(opt.notes)
                        else:
                            model.save(opt.notes)
                    scheduler.step(running_loss)
                    running_loss = 0
                    num = 0