Ejemplo n.º 1
0
	def __init__(self, config):
		super(Model, self).__init__()
		self.config = config

		self.bilstm1 = nn.LSTM(input_size=config.emb_size, hidden_size=config.hidden_size, bidirectional=True, batch_first=True)
		self.bilstm2 = nn.LSTM(input_size=config.emb_size, hidden_size=config.hidden_size, bidirectional=True, batch_first=True)

		self.linear1 = nn.Linear(2*config.hidden_size, 2*config.hidden_size)
		self.linear2 = nn.Linear(2*config.hidden_size, 2*config.hidden_size)
		self.linear3 = nn.Linear(2*config.hidden_size, 2*config.hidden_size)

		self.fuse_linear1 = nn.Linear(4*config.hidden_size, 2*config.hidden_size)
		self.fuse_linear2 = nn.Linear(4*config.hidden_size, 2*config.hidden_size)

		self.bilinear = nn.Bilinear(2*config.hidden_size, 2*config.hidden_size, 1)
		self.align_linear1 = nn.Linear(2*config.hidden_size, 1)
		self.align_linear2 = nn.Linear(2*config.hidden_size, 1)
Ejemplo n.º 2
0
    def __init__(self, args, rank_mode=False):
        super(InteractionAggregator, self).__init__()
        self.hidden_size = args.hidden_size
        self.position_enc = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(11, self.hidden_size,
                                                                                     padding_idx=0), freeze=True)
        self.tanh = nn.Tanh()
        self.relu = nn.ReLU(inplace=False)
        self.softmax = nn.Softmax(dim=1)
        self.rank_mode = rank_mode
        self.M = nn.Bilinear(self.hidden_size, self.hidden_size, self.hidden_size)
        nn.init.xavier_normal_(self.M.weight)

        self.w_attn1 = nn.Linear(self.hidden_size, self.hidden_size)
        nn.init.xavier_normal_(self.w_attn1.weight)
        if self.rank_mode:
            self.w_attn2 = nn.Linear(self.hidden_size, self.hidden_size)
            nn.init.xavier_normal_(self.w_attn2.weight)
Ejemplo n.º 3
0
    def __init__(self, word_vocab, rel_vocab, config):
        super(RelationRanking, self).__init__()
        self.config = config
        rel1_vocab, rel2_vocab = rel_vocab
        self.word_embed = Embeddings(word_vec_size=config.d_word_embed,
                                     dicts=word_vocab)
        self.rel1_embed = Embeddings(word_vec_size=config.d_rel_embed,
                                     dicts=rel1_vocab)
        self.rel2_embed = Embeddings(word_vec_size=config.d_rel_embed,
                                     dicts=rel2_vocab)
        #        print(self.rel_embed.word_lookup_table.weight.data)
        #rel_embed的初始化待改 rel_embed.lookup_table.weight.data.normal_(0, 0.1)

        if self.config.rnn_type.lower() == 'gru':
            self.rnn = nn.GRU(input_size=config.d_word_embed,
                              hidden_size=config.d_hidden,
                              num_layers=config.n_layers,
                              dropout=config.dropout_prob,
                              bidirectional=config.birnn,
                              batch_first=True)
        else:
            self.rnn = nn.LSTM(input_size=config.d_word_embed,
                               hidden_size=config.d_hidden,
                               num_layers=config.n_layers,
                               dropout=config.dropout_prob,
                               bidirectional=config.birnn,
                               batch_first=True)

        self.dropout = nn.Dropout(p=config.dropout_prob)
        seq_in_size = config.d_hidden
        if self.config.birnn:
            seq_in_size *= 2

        self.question_attention = MLPWordSeqAttention(
            input_size=config.d_rel_embed, seq_size=seq_in_size)

        self.bilinear = nn.Bilinear(seq_in_size,
                                    config.d_rel_embed,
                                    1,
                                    bias=False)

        self.seq_out = nn.Sequential(
            #                        nn.BatchNorm1d(seq_in_size),
            self.dropout,
            nn.Linear(seq_in_size, config.d_rel_embed))
Ejemplo n.º 4
0
    def __init__(self, args):
        super(NeuralNetwork, self).__init__()
        self.args = args
        self.patience = 0
        self.init_clip_max_norm = 5.0
        self.optimizer = None
        self.best_result = [0, 0, 0, 0, 0, 0]
        self.metrics = Metrics(self.args.score_file_path)
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')

        config_class, model_class, tokenizer_class = MODEL_CLASSES[
            args.model_type]

        self.bert_config = config_class.from_pretrained(
            args.config_name if args.config_name else args.model_name_or_path,
            finetuning_task="classification",
            num_labels=1)

        self.bert_tokenizer = BertTokenizer.from_pretrained(
            args.tokenizer_name
            if args.tokenizer_name else args.model_name_or_path,
            do_lower_case=args.do_lower_case)
        special_tokens_dict = {
            'eos_token': '[eos]',
            'additional_special_tokens': ['[soe]', '[eoe]']
        }
        num_added_toks = self.bert_tokenizer.add_special_tokens(
            special_tokens_dict)

        self.bert_model = model_class.from_pretrained(
            args.model_name_or_path,
            from_tf=bool('.ckpt' in args.model_name_or_path),
            config=self.bert_config)
        self.bert_model.resize_token_embeddings(len(self.bert_tokenizer))

        self.bert_model = self.bert_model.cuda()

        self.attn = nn.Linear(768, 768)
        self.rnn = nn.GRU(input_size=768,
                          hidden_size=200,
                          num_layers=1,
                          batch_first=True,
                          bidirectional=False)
        self.bilinear = nn.Bilinear(768, 768, 1)
Ejemplo n.º 5
0
    def __init__(self,inshape,kernelsize,hiddensize):
        super(CNN_LSTM_predictor,self).__init__()

        # shape parameters: 
        self.batch_size, self.n_filters = inshape
        self.lstm_input = seq_len = 20 - kernelsize + 1
        
        # layers
        self.cnnPrice = nn.Conv1d(1,self.n_filters,kernelsize)
        self.cnnVolume = nn.Conv1d(1,self.n_filters,kernelsize)
        self.lstmPrice = nn.LSTM(self.lstm_input,self.lstm_input)
        self.lstmVolume = nn.LSTM(self.lstm_input,self.lstm_input)
        bilin_size = seq_len * self.n_filters
        self.Bilin = nn.Bilinear(bilin_size,bilin_size,36)
        self.output_layer = nn.Sequential(     
            nn.Dropout(p=0.5),  # explained later
            nn.Linear(36, 1)
            )
Ejemplo n.º 6
0
    def __init__(self, config):
        super(StructuredAttention, self).__init__()
        # self.use_gpu = config.use_gpu
        #self.device = torch.device("cuda" if config.use_gpu else "cpu")
        self.device = config.device

        self.bidirectional = config.rnn_bidir
        self.sem_dim_size = None
        if config.rnn_bidir:
            self.sem_dim_size = 2 * config.sem_dim_size
        else:
            self.sem_dim_size = config.sem_dim_size
        self.rnn_cell_size = config.rnn_cell_size
        if self.bidirectional:
            self.rnn_cell_size = self.rnn_cell_size * 2
        self.str_dim_size = self.rnn_cell_size - self.sem_dim_size
        
        self.pytorch_version = "stable"
        # print("Setting pytorch "+self.pytorch_version+" version for Structured Attention")

        self.tp_linear = nn.Linear(self.str_dim_size, self.str_dim_size, bias=True)
        torch.nn.init.xavier_uniform_(self.tp_linear.weight)
        nn.init.constant_(self.tp_linear.bias, 0)

        self.tc_linear = nn.Linear(self.str_dim_size, self.str_dim_size, bias=True)
        torch.nn.init.xavier_uniform_(self.tc_linear.weight)
        nn.init.constant_(self.tc_linear.bias, 0)

        self.fi_linear = nn.Linear(self.str_dim_size, 1, bias=False)
        torch.nn.init.xavier_uniform_(self.fi_linear.weight)

        self.bilinear = nn.Bilinear(self.str_dim_size, self.str_dim_size, 1, bias=False)
        torch.nn.init.xavier_uniform_(self.bilinear.weight)

        self.exparam = nn.Parameter(torch.Tensor(1,1,self.sem_dim_size))
        torch.nn.init.xavier_uniform_(self.exparam)

        self.fzlinear = nn.Linear(3*self.sem_dim_size, self.sem_dim_size, bias=True)
        torch.nn.init.xavier_uniform_(self.fzlinear.weight)
        nn.init.constant_(self.fzlinear.bias, 0)

        self.tanh = nn.Tanh()
        self.relu = nn.ReLU()
        self.leak_relu = nn.LeakyReLU()
Ejemplo n.º 7
0
    def __init__(self,
                 dim_embeddings,
                 dim_rnn=128,
                 num_layers=2,
                 dropout_rate=0,
                 similarity='inner',
                 pooling='avg'):
        super(RnnAttentionNet, self).__init__()
        self.dim_embeddings = dim_embeddings
        self.dim_rnn = dim_rnn
        self.dim_encoded = 2 * dim_rnn
        self.num_layers = num_layers
        self.dropout_rate = dropout_rate

        self.similarity = similarity
        self.pooling = pooling

        self.rnn_context = nn.GRU(input_size=dim_embeddings,
                                  hidden_size=dim_rnn,
                                  num_layers=num_layers,
                                  batch_first=True,
                                  dropout=dropout_rate,
                                  bidirectional=True)
        #         self.rnn_option = nn.GRU(input_size=dim_embeddings, hidden_size=dim_rnn,
        #                           num_layers=num_layers, batch_first=True,
        #                           dropout=dropout_rate, bidirectional=True)

        self.rnn_attn_context = nn.GRU(input_size=4 * self.dim_encoded,
                                       hidden_size=dim_rnn,
                                       num_layers=1,
                                       batch_first=True,
                                       dropout=dropout_rate,
                                       bidirectional=True)
        #         self.rnn_attn_option = nn.GRU(input_size=4*self.dim_encoded, hidden_size=dim_rnn,
        #                           num_layers=num_layers, batch_first=True,
        #                           dropout=dropout_rate, bidirectional=True)
        if self.similarity == 'cosine' or self.similarity == 'inner':
            self.bi_fc = nn.Bilinear(self.dim_encoded, self.dim_encoded, 1)
        elif self.similarity == 'trilinear':
            self.co_attn = COAttention(d_model=self.dim_encoded,
                                       dropout=dropout_rate)
            self.fc_co = nn.Linear(self.dim_encoded, 1)
        else:
            raise ValueError(f"Invalid Similarity: {self.similarity}")
Ejemplo n.º 8
0
	def __init__(self, opts):

		self.vocab_size = opts.vocab_size # default 10000
		self.r = opts.r # 1, 2

		super(GRN16, self).__init__()


		self.emb = nn.Embedding(
			self.vocab_size,
			50
		)

		self.blstm = nn.LSTM(
			50,
			50,
			batch_first=True,
			bidirectional=True
		)

		self.gate = nn.Linear(200,
			self.r
		)

		self.H = nn.Bilinear(
			100,
			100,
			self.r,
			bias=False
		)

		self.V = nn.Linear(
			200,
			self.r,
			bias=False

		)
		self.b = Parameter(torch.zeros(1, 2))

		self.v = nn.Linear(self.r, 1)
		
		self.maxpool2d = nn.MaxPool2d([3, 3])
		self.linear1 = nn.Linear(17 * 17, 50) # [50, 50] --> (3, 3) maxpool --> [17, 17]
		self.linear2 = nn.Linear(50, 2)
Ejemplo n.º 9
0
    def __init__(self,
                 dim_in: int,
                 dropout: float,
                 score_type: str = 'dot') -> None:
        super(Score_Net, self).__init__()
        self.dim_in = dim_in
        self.dropout = dropout
        self.score_type = score_type
        self.Dropout = nn.Dropout(dropout)
        self.head = nn.Parameter(T(1, dim_in))
        self.tail = nn.Parameter(T(1, dim_in))

        self.layernorm = nn.LayerNorm(dim_in)

        if score_type == 'bilinear':
            self.func: Callable[[T, T], T] = nn.Bilinear(dim_in, dim_in, 1)
        else:
            self.func: Callable[[T, T], T] = torch.bmm
        self.init_para()
Ejemplo n.º 10
0
 def __init__(self,
              dim_hid: int,
              score_type: str,
              bidirectional: bool = False) -> None:
     super(Predic_Net, self).__init__()
     self.dim_hid = dim_hid
     self.score_type = score_type
     self.bidirectional = bidirectional
     if score_type == 'bilinear':
         self.func: Callable[[T, T], T] = nn.Bilinear(dim_hid, dim_hid, 1)
     elif score_type == 'dot':
         self.func: Callable[[T, T], T] = torch.bmm
     elif score_type == 'denselinear':
         self.func = nn.Linear(4 * dim_hid, 2)
     elif score_type == 'linear':
         self.func = nn.Linear(2 * dim_hid, 2)
     self.init_para()
     self.norm_factor = np.sqrt(dim_hid)
     self.layernorm = nn.LayerNorm(dim_hid)
Ejemplo n.º 11
0
    def __init__(self, config, embedding):
        super(rc_cnn_dailmail, self).__init__()
        self.dict_embedding = nn.Embedding(num_embeddings=config.dict_num,
                                           embedding_dim=100,
                                           _weight=embedding)
        # self.dict_embedding.weight.requires_grad = False

        self.bilinear = nn.Bilinear(config.hidden_size * 2,
                                    config.hidden_size * 2, 1)
        self.lstm1 = nn.GRU(config.input_size,
                            config.hidden_size,
                            bidirectional=True,
                            batch_first=True,
                            dropout=config.dropout)
        self.lstm2 = nn.GRU(config.input_size,
                            config.hidden_size,
                            bidirectional=True,
                            batch_first=True,
                            dropout=config.dropout)
        self.linear = nn.Linear(config.hidden_size * 2, config.eneity_num)
Ejemplo n.º 12
0
    def __init__(self, config):
        super(CNNBaseline, self).__init__(config)
        self.bert = BertModel(config)
        self.init_weights()

        self._embedding = self.bert.embeddings.word_embeddings

        filter_sizes = [2, 3, 4, 5]
        num_filters = 36
        embedding_size = 768

        self._convs = nn.ModuleList([
            nn.Conv2d(1, num_filters, (K, embedding_size))
            for K in filter_sizes
        ])
        self._dropout = nn.Dropout(0.1)
        self._linear = nn.Bilinear(
            len(filter_sizes) * num_filters,
            len(filter_sizes) * num_filters, 1)
        self.apply(self.init_esim_weights)
Ejemplo n.º 13
0
    def __init__(self, vocab, vocab_size, hidden_size, dropout, slots,
                 gating_dict, shared_emb):
        super(Generator, self).__init__()
        self.slots = slots
        self.vocab = vocab
        self.vocab_size = vocab_size
        self.nb_gate = len(gating_dict)
        self.hidden_size = hidden_size
        self.gating_dict = gating_dict

        self.embedding = shared_emb  # token embedding matrix shared with encoders

        self.dropout_layer = nn.Dropout(dropout)
        self.bilinear = nn.Bilinear(self.hidden_size, self.hidden_size, 1)

        self.gru = nn.GRU(hidden_size, hidden_size, dropout=dropout)
        self.W_ratio = nn.Linear(3 * hidden_size, 1)  # W_1

        self.softmax = nn.Softmax(dim=1)
        self.sigmoid = nn.Sigmoid()
Ejemplo n.º 14
0
 def __init__(self,input_dim1,input_dim2,output_dim,
              tauM = 20,tauAdp_inital =100, tau_initializer = 'normal',tauM_inital_std = 5,tauAdp_inital_std = 5,
              is_adaptive=1,device='cpu'):
     super(spike_Bidense, self).__init__()
     self.input_dim1 = input_dim1
     self.input_dim2 = input_dim2
     self.output_dim = output_dim
     self.is_adaptive = is_adaptive
     self.device = device
     
     self.dense = nn.Bilinear(input_dim1,input_dim2,output_dim)
     self.tau_m = nn.Parameter(torch.Tensor(self.output_dim))
     self.tau_adp = nn.Parameter(torch.Tensor(self.output_dim))
     
     if tau_initializer == 'normal':
         nn.init.normal_(self.tau_m,tauM,tauM_inital_std)
         nn.init.normal_(self.tau_adp,tauAdp_inital,tauAdp_inital_std)
     elif tau_initializer == 'multi_normal':
         self.tau_m = multi_normal_initilization(self.tau_m,tauM,tauM_inital_std)
         self.tau_adp = multi_normal_initilization(self.tau_adp,tauAdp_inital,tauAdp_inital_std)
Ejemplo n.º 15
0
    def __init__(self,
                 n_in,
                 n_hid,
                 n_out,
                 do_prob=0.,
                 bilinear=False,
                 bnorm=True):
        super(MLP, self).__init__()
        self.bilinear = bilinear
        self.bnorm = bnorm
        if bilinear:
            self.fc1 = nn.Bilinear(n_in, n_in, n_hid)
        else:
            self.fc1 = nn.Linear(n_in, n_hid)
        self.fc2 = nn.Linear(n_hid, n_out)
        if bnorm:
            self.bn = nn.BatchNorm1d(n_out)
        self.dropout_prob = do_prob

        self.init_weights()
Ejemplo n.º 16
0
def test_metabilinear_params(bias):
    meta_model = MetaBilinear(2, 3, 5, bias=bias)
    model = nn.Bilinear(2, 3, 5, bias=bias)

    params = OrderedDict()
    params['weight'] = torch.randn(5, 2, 3)
    model.weight.data.copy_(params['weight'])

    if bias:
        params['bias'] = torch.randn(5)
        model.bias.data.copy_(params['bias'])

    inputs1 = torch.randn(7, 2)
    inputs2 = torch.randn(7, 3)

    outputs_torchmeta = meta_model(inputs1, inputs2, params=params)
    outputs_nn = model(inputs1, inputs2)

    np.testing.assert_equal(outputs_torchmeta.detach().numpy(),
                            outputs_nn.detach().numpy())
Ejemplo n.º 17
0
    def __init__(self,
                 latent_dim,
                 hidden_dim,
                 n_out=1,
                 num_layers=1,
                 activation=nn.Tanh,
                 softplus=False,
                 resid=False,
                 expand_coords=False,
                 bilinear=False):
        super(SpatialGenerator, self).__init__()

        self.softplus = softplus
        self.expand_coords = expand_coords

        in_dim = 2
        if expand_coords:
            in_dim = 5  # include squares of coordinates as inputs

        self.coord_linear = nn.Linear(in_dim, hidden_dim)
        self.latent_dim = latent_dim
        if latent_dim > 0:
            self.latent_linear = nn.Linear(latent_dim, hidden_dim, bias=False)

        if latent_dim > 0 and bilinear:  # include bilinear layer on latent and coordinates
            self.bilinear = nn.Bilinear(in_dim,
                                        latent_dim,
                                        hidden_dim,
                                        bias=False)

        layers = [activation()]
        for _ in range(1, num_layers):
            if resid:
                layers.append(
                    ResidLinear(hidden_dim, hidden_dim, activation=activation))
            else:
                layers.append(nn.Linear(hidden_dim, hidden_dim))
                layers.append(activation())
        layers.append(nn.Linear(hidden_dim, n_out))

        self.layers = nn.Sequential(*layers)
Ejemplo n.º 18
0
    def __init__(self, input_dims, action_dims):
        super(M1pM1, self).__init__()

        self.input_dims = input_dims
        self.action_dims = action_dims

        self.seq = nn.Sequential(
            nn.Linear(input_dims * 2 + action_dims, input_dims * 4),
            cheese_layer(), nn.Linear(input_dims * 4, input_dims * 4),
            cheese_layer(), nn.Linear(input_dims * 4, input_dims * 4),
            cheese_layer(), nn.Linear(input_dims * 4, input_dims))

        self.seq2 = nn.Sequential(nn.Linear(input_dims, input_dims * 4),
                                  cheese_layer(),
                                  nn.Linear(input_dims * 4, input_dims * 4),
                                  cheese_layer(),
                                  nn.Linear(input_dims * 4, input_dims * 4),
                                  cheese_layer(),
                                  nn.Linear(input_dims * 4, input_dims))

        self.bi2 = nn.Bilinear(input_dims, input_dims, input_dims)
Ejemplo n.º 19
0
    def __init__(self,
                 vocab_size,
                 emb_size,
                 hidden_size,
                 dropout_rate,
                 tied_embedding=None,
                 enc_attention=False):
        super(DecoderRNN, self).__init__()
        self.GRU = nn.GRU(emb_size, hidden_size, dropout=dropout_rate)
        output_size = hidden_size
        self.enc_attention = enc_attention
        if enc_attention:
            self.bilinear = nn.Bilinear(hidden_size, hidden_size, 1)
            output_size += hidden_size
        self.pre_out = nn.Linear(output_size, emb_size)

        self.out_layer = nn.Linear(emb_size, vocab_size)

        # Tied embedding means the word embedding layer weights are shared in encoder and decoder
        if tied_embedding is not None:
            self.out_layer.weight = tied_embedding.weight