Ejemplo n.º 1
0
    def forward(
        self,
        pixel_values=None,
        head_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoFeatureExtractor, SwinForImageClassification
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
        >>> model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

        >>> inputs = feature_extractor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        ```"""

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.swin(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
Ejemplo n.º 2
0
def main_worker(index, opt):
    random.seed(opt.manual_seed)
    np.random.seed(opt.manual_seed)
    torch.manual_seed(opt.manual_seed)

    if index >= 0 and opt.device.type == 'cuda':
        opt.device = torch.device(f'cuda:{index}')

    if opt.distributed:
        opt.dist_rank = opt.dist_rank * opt.ngpus_per_node + index
        dist.init_process_group(backend='nccl',
                                init_method=opt.dist_url,
                                world_size=opt.world_size,
                                rank=opt.dist_rank)
        opt.batch_size = int(opt.batch_size / opt.ngpus_per_node)
        opt.n_threads = int(
            (opt.n_threads + opt.ngpus_per_node - 1) / opt.ngpus_per_node)
    opt.is_master_node = not opt.distributed or opt.dist_rank == 0

    model = generate_model(opt)
    if opt.batchnorm_sync:
        assert opt.distributed, 'SyncBatchNorm only supports DistributedDataParallel.'
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    if opt.pretrain_path:
        model = load_pretrained_model(model, opt.pretrain_path, opt.model,
                                      opt.n_finetune_classes)
    if opt.resume_path is not None:
        model = resume_model(opt.resume_path, opt.arch, model)
    model = make_data_parallel(model, opt.distributed, opt.device)

    if opt.pretrain_path:
        parameters = get_fine_tuning_parameters(model, opt.ft_begin_module)
    else:
        parameters = model.parameters()

    if opt.is_master_node:
        print(model)

    # criterion = CrossEntropyLoss().to(opt.device)
    criterion = MSELoss().to(opt.device)

    if not opt.no_train:
        (train_loader, train_sampler, train_logger, train_batch_logger,
         optimizer, scheduler) = get_train_utils(opt, parameters)
        if opt.resume_path is not None:
            opt.begin_epoch, optimizer, scheduler = resume_train_utils(
                opt.resume_path, opt.begin_epoch, optimizer, scheduler)
            if opt.overwrite_milestones:
                scheduler.milestones = opt.multistep_milestones
    if not opt.no_val:
        val_loader, val_logger = get_val_utils(opt)

    if opt.tensorboard and opt.is_master_node:
        from torch.utils.tensorboard import SummaryWriter
        if opt.begin_epoch == 1:
            tb_writer = SummaryWriter(log_dir=opt.result_path)
        else:
            tb_writer = SummaryWriter(log_dir=opt.result_path,
                                      purge_step=opt.begin_epoch)
    else:
        tb_writer = None

    prev_val_loss = None
    for i in range(opt.begin_epoch, opt.n_epochs + 1):
        if not opt.no_train:
            if opt.distributed:
                train_sampler.set_epoch(i)
            current_lr = get_lr(optimizer)
            train_epoch(i, train_loader, model, criterion, optimizer,
                        opt.device, current_lr, train_logger,
                        train_batch_logger, tb_writer, opt.distributed)

            if i % opt.checkpoint == 0 and opt.is_master_node:
                save_file_path = opt.result_path / 'save_{}.pth'.format(i)
                save_checkpoint(save_file_path, i, opt.arch, model, optimizer,
                                scheduler)

        if not opt.no_val:
            prev_val_loss = val_epoch(i, val_loader, model, criterion,
                                      opt.device, val_logger, tb_writer,
                                      opt.distributed)

        if not opt.no_train and opt.lr_scheduler == 'multistep':
            scheduler.step()
        elif not opt.no_train and opt.lr_scheduler == 'plateau':
            scheduler.step(prev_val_loss)

       # try doing test later here

    if opt.inference:
        inference_loader, inference_class_names = get_inference_utils(opt)
        inference_result_path = opt.result_path / '{}_results.json'.format(
            opt.inference_subset)

        inference.inference(inference_loader, model, inference_result_path,
                            inference_class_names, opt.inference_no_average,
                            opt.output_topk)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mnli-mm": MnliMismatchedProcessor,
        "mrpc": MrpcProcessor,
        "sst-2": Sst2Processor,
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
        "yelp": YelpProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
        "yelp": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
        loss = tr_loss / global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

            if os.path.exists(args.output_dir +
                              '-MM') and os.listdir(args.output_dir +
                                                    '-MM') and args.do_train:
                raise ValueError(
                    "Output directory ({}) already exists and is not empty.".
                    format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(
                    eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids,
                                   segment_ids,
                                   input_mask,
                                   labels=None)

                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(preds[0],
                                         logits.detach().cpu().numpy(),
                                         axis=0)

            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
            loss = tr_loss / global_step if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM',
                                            "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
Ejemplo n.º 4
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        Examples::

            from transformers import AlbertTokenizer, AlbertForSequenceClassification
            import torch

            tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
            model = AlbertForSequenceClassification.from_pretrained('albert-base-v2')
            input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
            labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
            outputs = model(input_ids, labels=labels)
            loss, logits = outputs[:2]

        """

        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)
Ejemplo n.º 5
0
    def train(self, train_examples, model):
        """
        Trains the model.
        Parameters
        ----------
        examples: list
            Contains the data as a list of InputExample's
        model: BertModel
            The Bert model to be trained.
        weights: list
            Contains class weights.
        Returns
        -------
        model: BertModel
            The trained model.
        """

        validation_examples = self.get_data('validation')

        global_step = 0

        self.validation_losses = []

        # Training
        train_dataloader = self.get_loader(train_examples, 'train')

        model.train()

        step_number = len(train_dataloader)

        i = 0
        for _ in trange(int(self.config.num_train_epochs), desc="Epoch"):

            model.train()

            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0

            for step, batch in enumerate(
                    tqdm(train_dataloader, desc='Iteration')):

                if (self.config.gradual_unfreeze and i == 0):
                    for param in model.bert.parameters():
                        param.requires_grad = False

                if (step % (step_number // 3)) == 0:
                    i += 1

                if (self.config.gradual_unfreeze and i > 1
                        and i < self.config.encoder_no):

                    for k in range(i - 1):

                        try:
                            for param in model.bert.encoder.layer[
                                    self.config.encoder_no - 1 -
                                    k].parameters():
                                param.requires_grad = True
                        except:
                            pass

                if (self.config.gradual_unfreeze
                        and i > self.config.encoder_no + 1):
                    for param in model.bert.embeddings.parameters():
                        param.requires_grad = True

                batch = tuple(t.to(self.device) for t in batch)

                input_ids, attention_mask, token_type_ids, label_ids, agree_ids = batch

                logits = model(input_ids, attention_mask, token_type_ids)[0]
                weights = self.class_weights.to(self.device)

                if self.config.output_mode == "classification":
                    loss_fct = CrossEntropyLoss(weight=weights)
                    loss = loss_fct(logits.view(-1, self.num_labels),
                                    label_ids.view(-1))
                elif self.config.output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if self.config.gradient_accumulation_steps > 1:
                    loss = loss / self.config.gradient_accumulation_steps
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % self.config.gradient_accumulation_steps == 0:
                    if self.config.fp16:
                        lr_this_step = self.config.learning_rate * warmup_linear(
                            global_step / self.num_train_optimization_steps,
                            self.config.warm_up_proportion)
                        for param_group in self.optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                    self.optimizer.step()
                    self.scheduler.step()
                    self.optimizer.zero_grad()
                    global_step += 1

            # Validation

            validation_loader = self.get_loader(validation_examples,
                                                phase='eval')
            model.eval()

            valid_loss, valid_accuracy = 0, 0
            nb_valid_steps, nb_valid_examples = 0, 0

            for input_ids, attention_mask, token_type_ids, label_ids, agree_ids in tqdm(
                    validation_loader, desc="Validating"):
                input_ids = input_ids.to(self.device)
                attention_mask = attention_mask.to(self.device)
                token_type_ids = token_type_ids.to(self.device)
                label_ids = label_ids.to(self.device)
                agree_ids = agree_ids.to(self.device)

                with torch.no_grad():
                    logits = model(input_ids, attention_mask,
                                   token_type_ids)[0]

                    if self.config.output_mode == "classification":
                        loss_fct = CrossEntropyLoss(weight=weights)
                        tmp_valid_loss = loss_fct(
                            logits.view(-1, self.num_labels),
                            label_ids.view(-1))
                    elif self.config.output_mode == "regression":
                        loss_fct = MSELoss()
                        tmp_valid_loss = loss_fct(logits.view(-1),
                                                  label_ids.view(-1))

                    valid_loss += tmp_valid_loss.mean().item()

                    nb_valid_steps += 1

            valid_loss = valid_loss / nb_valid_steps

            self.validation_losses.append(valid_loss)
            print("Validation losses: {}".format(self.validation_losses))

            if valid_loss == min(self.validation_losses):

                try:
                    os.remove(self.config.model_dir /
                              ('temporary' + str(best_model)))
                except:
                    print('No best model found')
                torch.save({
                    'epoch': str(i),
                    'state_dict': model.state_dict()
                }, self.config.model_dir / ('temporary' + str(i)))
                best_model = i

        # Save a trained model and the associated configuration
        checkpoint = torch.load(self.config.model_dir /
                                ('temporary' + str(best_model)))
        model.load_state_dict(checkpoint['state_dict'])
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(self.config.model_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(self.config.model_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
        os.remove(self.config.model_dir / ('temporary' + str(best_model)))
        return model
Ejemplo n.º 6
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        distilbert_output = self.distilbert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_state = distilbert_output[0]  # (bs, seq_len, dim)
        pooled_output = hidden_state[:, 0]  # (bs, dim)
        pooled_output = self.pre_classifier(pooled_output)  # (bs, dim)
        pooled_output = nn.ReLU()(pooled_output)  # (bs, dim)
        pooled_output = self.dropout(pooled_output)  # (bs, dim)
        logits = self.classifier(pooled_output)  # (bs, num_labels)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + distilbert_output[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=distilbert_output.hidden_states,
            attentions=distilbert_output.attentions,
        )
Ejemplo n.º 7
0
 def __init__(self,
              exploration='epsilonGreedy',
              memory=10000,
              discount=0.99,
              uncertainty=True,
              uncertainty_weight=1,
              update_every=200,
              double=True,
              use_distribution=True,
              reward_normalization=False,
              encoder=None,
              hidden_size=40,
              state_difference=True,
              state_difference_weight=1,
              **kwargs) -> None:
     self.uncertainty = uncertainty
     self.hidden_size = hidden_size
     self.network = NetWork(self.hidden_size).to(device)
     self.createEncoder(encoder)
     self.network.hasEncoder = self.hasEncoder
     print("Number of parameters in network:",
           count_parameters(self.network))
     self.criterion = MSELoss()
     self.memory = ReplayBuffer(int(memory))
     self.remember = self.memory.remember()
     self.exploration = Exploration()
     if exploration == 'greedy':
         self.explore = self.exploration.greedy
     elif exploration == 'epsilonGreedy':
         self.explore = self.exploration.epsilonGreedy
     elif exploration == 'softmax':
         self.explore = self.exploration.softmax
     elif exploration == 'epsintosoftmax':
         self.explore = self.exploration.epsintosoftmax
     self.target_network = NetWork(self.hidden_size).to(device)
     self.target_network.hasEncoder = self.hasEncoder
     self.placeholder_network = NetWork(self.hidden_size).to(device)
     self.placeholder_network.hasEncoder = self.hasEncoder
     self.gamma, self.f = discount, 0
     self.update_every, self.double, self.use_distribution = update_every, double, use_distribution
     self.counter = 0
     self.reward_normalization = reward_normalization
     self.state_difference = state_difference
     self.true_state_trace = None
     self.uncertainty_weight = uncertainty_weight
     self.state_difference_weight = state_difference_weight
     if encoder is not None:
         self.optimizer_value = Adam(
             list(self.network.fromEncoder.parameters()) +
             list(self.network.lstm.parameters()) +
             list(self.network.linear.parameters()),
             lr=1e-4,
             weight_decay=1e-5)
     else:
         self.optimizer_value = Adam(list(self.network.color.parameters()) +
                                     list(self.network.conv1.parameters()) +
                                     list(self.network.lstm.parameters()) +
                                     list(self.network.linear.parameters()),
                                     lr=1e-4,
                                     weight_decay=1e-5)
     if self.uncertainty:
         self.optimizer_exploration = Adam(list(
             self.network.exploration_network.parameters()),
                                           lr=1e-4,
                                           weight_decay=1e-5)
     if self.state_difference:
         self.optimizer_state_avoidance = Adam(list(
             self.network.state_difference_network.parameters()),
                                               lr=1e-4,
                                               weight_decay=1e-5)
     self.onpolicy = True
Ejemplo n.º 8
0
    def forward(self,
                input_ids,
                src_probs=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None,
                labels=None,
                loss_ignore_index=-100,
                hard_labels=None,
                hard_labels_mask=None,
                hard_label_loss_weight=0):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids,
                            head_mask=head_mask)

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits, ) + outputs[
            2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels),
                                labels.view(-1))
            outputs = (loss, ) + outputs

        if src_probs is not None:
            # ## KL Divergence
            # loss_KD_fct = KLDivLoss(reduction="mean")
            # log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
            # if attention_mask is not None:
            #     active_loss = attention_mask.view(-1) == 1
            #     active_log_probs = log_probs.view(-1, self.num_labels)[active_loss]
            #     active_src_probs = src_probs.view(-1, self.num_labels)[active_loss]
            #
            #     loss_KD = loss_KD_fct(active_log_probs, active_src_probs)
            # else:
            #     loss_KD = loss_KD_fct(log_probs, src_probs)

            # ## CrossEntropy
            # loss_KD_fct = CrossEntropyLoss()
            # src_labels = torch.argmax(src_probs.view(-1, self.num_labels), dim=-1)
            # if attention_mask is not None:
            #     active_loss = attention_mask.view(-1) == 1
            #     active_logits = logits.view(-1, self.num_labels)[active_loss]
            #     active_src_labels = src_labels[active_loss]
            #
            #     loss_KD = loss_KD_fct(active_logits, active_src_labels)
            # else:
            #     loss_KD = loss_KD_fct(logits.view(-1, self.num_labels), src_labels)

            ## L2 Norm
            loss_KD_fct = MSELoss(reduction="mean")
            probs = torch.nn.functional.softmax(logits, dim=-1)
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                # Note that, even in TS learning, actually here we do NOT use the label information. Instead we just remove the loss w.r.t sub-word starting with "##" in BERT
                inactive_subword = labels.view(-1) == loss_ignore_index
                active_loss[inactive_subword] = 0
                active_probs = probs.view(-1, self.num_labels)[active_loss]
                active_src_probs = src_probs.view(-1,
                                                  self.num_labels)[active_loss]

                loss_KD = loss_KD_fct(active_probs, active_src_probs)
            else:
                loss_KD = loss_KD_fct(probs, src_probs)

            if hard_labels is not None:
                hard_active_loss = active_loss == 1
                if hard_labels_mask is not None:
                    hard_active_loss[hard_labels_mask.view(-1) == 0] = 0
                active_hard_probs = probs.view(
                    -1, self.num_labels)[hard_active_loss]
                activate_hard_labels = hard_labels.view(
                    -1, self.num_labels)[hard_active_loss]
                loss_hard = loss_KD_fct(active_hard_probs,
                                        activate_hard_labels)

                if hard_label_loss_weight >= 0:
                    # use both soft labels and hard labels for calculating loss
                    loss_KD += loss_hard * hard_label_loss_weight
                else:
                    # i.e., Only use the ensured labels for training, NO soft labels are used
                    loss_KD = loss_hard

            outputs = (loss_KD, ) + outputs

        return outputs  # (loss_KD), (loss), scores, (hidden_states), (attentions)
Ejemplo n.º 9
0
n_epochs = 20  #       ( lr = Learning Rate )

data_list = torch.load('E:\\final_project\\data\\graphs_ran\\%s' %
                       graphs[0])  # GRABS FIRST Graph-FILE FOR TRAINING
#   (You could loop over this )

## TRAINING

scaler = StandardScaler()  # SCALER
loader = DataLoader(
    data_list, batch_size=batch_size)  # LOADS Graph-file INTO BATCH FORMAT
loss_list = list()  # HOLDS LOSS FOR PLOTTING
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr,
                             weight_decay=5e-4)  # OPTIMIZER
loss_func = MSELoss()  # LOSS FUNCTION

for i in range(0, len(loader)):  # LOOP OVER BATCHES
    data_train = next(iter(loader))  #
    data_train = data_train.to(device)  # MOUNTS DATA TO DEVICE
    ## 'PRE'-PROCESSING                                                         # NEXT FEW LINES DOES SCALING ON NODE FEATURES
    if i == 0:  # ( This was not done before putting them into the,
        scaler.fit(
            data_train.x.cpu().numpy()
            [:, 0:5])  #                                           Graph-file)
        data_train.x = torch.tensor(scaler.transform(
            data_train.x.cpu().numpy()[:, 0:5]),
                                    dtype=torch.float).float().cuda()
    else:
        data_train.x = torch.tensor(scaler.transform(
            data_train.x.cpu().numpy()[:, 0:5]),
    #     pin_memory=True
    # )

    checkpoint = '../model/{}_fold_{}_gpu_{}.pth'.format(
        args.model, fold, args.gpu)
    model = get_model()
    if args.finetune:
        state_dict = torch.load(checkpoint)
        model.load_state_dict(state_dict)
        for param in list(model.parameters())[:-109]:
            param.requires_grad = False

    model.cuda()
    if TRAIN:
        # criterion = mixed_loss
        criterion = MSELoss()
        if args.lr_scheduler == 'step':
            optimizer = Adam(model.parameters(),
                             lr=args.lr,
                             weight_decay=args.lr / 100)
            scheduler = StepLR(optimizer, step_size=7, gamma=.1)
        else:
            optimizer = Adam(model.parameters(), lr=args.lr)
            scheduler = ReduceLROnPlateau(optimizer,
                                          mode='min',
                                          patience=3,
                                          verbose=1,
                                          cooldown=1,
                                          min_lr=args.lr / 1000,
                                          factor=.1)
Ejemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_dir",
        default="data/MNLI",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--teacher_model",
                        default="pretrained/checkpoint-31280/",
                        type=str,
                        help="The teacher model dir.")
    parser.add_argument("--student_model",
                        default="pretrained/generalbert",
                        type=str,
                        help="The student model dir.")
    parser.add_argument("--task_name",
                        default="MNLI",
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default="output",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=384,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=128,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--weight_decay',
                        '--wd',
                        default=1e-4,
                        type=float,
                        metavar='W',
                        help='weight decay')
    parser.add_argument("--num_train_epochs",
                        default=5.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )

    # added arguments
    parser.add_argument('--aug_train', action='store_true')
    parser.add_argument('--eval_step', type=float, default=0.1)
    parser.add_argument('--pred_distill', action='store_true')
    parser.add_argument('--data_url', type=str, default="")
    parser.add_argument('--temperature', type=float, default=1.)

    args = parser.parse_args()
    logger.info('The args: {}'.format(args))

    # intermediate distillation default parameters
    default_params = {
        "cola": {
            "num_train_epochs": 50,
            "max_seq_length": 64
        },
        "mnli": {
            "num_train_epochs": 5,
            "max_seq_length": 128
        },
        "mrpc": {
            "num_train_epochs": 20,
            "max_seq_length": 128
        },
        "sst-2": {
            "num_train_epochs": 10,
            "max_seq_length": 64
        },
        "sts-b": {
            "num_train_epochs": 20,
            "max_seq_length": 128
        },
        "qqp": {
            "num_train_epochs": 5,
            "max_seq_length": 128
        },
        "qnli": {
            "num_train_epochs": 10,
            "max_seq_length": 128
        },
        "rte": {
            "num_train_epochs": 20,
            "max_seq_length": 128
        }
    }

    acc_tasks = ["mnli", "mrpc", "sst-2", "qqp", "qnli", "rte"]
    corr_tasks = ["sts-b"]
    mcc_tasks = ["cola"]

    # Prepare devices
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO)

    logger.info("device: {} n_gpu: {}".format(device, n_gpu))
    tb = SummaryWriter("./runs")

    # Prepare seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare task settings
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name in default_params:
        args.max_seq_len = default_params[task_name]["max_seq_length"]

    if not args.pred_distill and not args.do_eval:
        if task_name in default_params:
            args.num_train_epoch = default_params[task_name][
                "num_train_epochs"]

    if task_name not in processors:
        raise ValueError("Task not found: %s" % task_name)

    processor = processors[task_name]()
    output_mode = output_modes[task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.student_model,
                                              do_lower_case=args.do_lower_case)

    if not args.do_eval:
        if args.gradient_accumulation_steps < 1:
            raise ValueError(
                "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
                .format(args.gradient_accumulation_steps))

        args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

        train_data, _ = get_tensor_data(args, task_name, tokenizer, False,
                                        args.aug_train)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        num_train_optimization_steps = int(
            len(train_dataloader) /
            args.gradient_accumulation_steps) * args.num_train_epochs

    eval_data, eval_labels = get_tensor_data(args, task_name, tokenizer, True,
                                             False)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    if not args.do_eval:
        teacher_model = TinyBertForSequenceClassification.from_pretrained(
            args.teacher_model, num_labels=num_labels)
        teacher_model.to(device)

    student_model = TinyBertForSequenceClassification.from_pretrained(
        args.student_model, num_labels=num_labels)
    student_model.to(device)
    if args.do_eval:
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_data))
        logger.info("  Batch size = %d", args.eval_batch_size)

        student_model.eval()
        result = do_eval(student_model, task_name, eval_dataloader, device,
                         output_mode, eval_labels, num_labels)
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
    else:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_data))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        if n_gpu > 1:
            student_model = torch.nn.DataParallel(student_model)
            teacher_model = torch.nn.DataParallel(teacher_model)
        # Prepare optimizer
        param_optimizer = list(student_model.named_parameters())
        size = 0
        for n, p in student_model.named_parameters():
            logger.info('n: {}'.format(n))
            size += p.nelement()

        logger.info('Total parameters: {}'.format(size))
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        schedule = 'warmup_linear'
        if not args.pred_distill:
            schedule = 'none'
        optimizer = BertAdam(optimizer_grouped_parameters,
                             schedule=schedule,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)
        # Prepare loss functions
        loss_mse = MSELoss()

        def soft_cross_entropy(predicts, targets):
            student_likelihood = torch.nn.functional.log_softmax(predicts,
                                                                 dim=-1)
            targets_prob = torch.nn.functional.softmax(targets, dim=-1)
            return (-targets_prob * student_likelihood).mean()

        # Train and evaluate
        global_step = 0
        best_dev_acc = 0.0
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")

        for epoch_ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0.
            tr_att_loss = 0.
            tr_rep_loss = 0.
            tr_cls_loss = 0.

            student_model.train()
            nb_tr_examples, nb_tr_steps = 0, 0

            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration", ascii=True)):
                batch = tuple(t.to(device) for t in batch)

                input_ids, input_mask, segment_ids, label_ids, seq_lengths = batch
                if input_ids.size()[0] != args.train_batch_size:
                    continue

                att_loss = 0.
                rep_loss = 0.
                cls_loss = 0.

                student_logits, student_atts, student_reps = student_model(
                    input_ids, segment_ids, input_mask, is_student=True)

                with torch.no_grad():
                    teacher_logits, teacher_atts, teacher_reps = teacher_model(
                        input_ids, segment_ids, input_mask)

                if not args.pred_distill:
                    teacher_layer_num = len(teacher_atts)
                    student_layer_num = len(student_atts)
                    assert teacher_layer_num % student_layer_num == 0
                    layers_per_block = int(teacher_layer_num /
                                           student_layer_num)
                    new_teacher_atts = [
                        teacher_atts[i * layers_per_block + layers_per_block -
                                     1] for i in range(student_layer_num)
                    ]

                    for student_att, teacher_att in zip(
                            student_atts, new_teacher_atts):
                        student_att = torch.where(
                            student_att <= -1e2,
                            torch.zeros_like(student_att).to(device),
                            student_att)
                        teacher_att = torch.where(
                            teacher_att <= -1e2,
                            torch.zeros_like(teacher_att).to(device),
                            teacher_att)

                        tmp_loss = loss_mse(student_att, teacher_att)
                        att_loss += tmp_loss

                    new_teacher_reps = [
                        teacher_reps[i * layers_per_block]
                        for i in range(student_layer_num + 1)
                    ]
                    new_student_reps = student_reps
                    for student_rep, teacher_rep in zip(
                            new_student_reps, new_teacher_reps):
                        tmp_loss = loss_mse(student_rep, teacher_rep)
                        rep_loss += tmp_loss

                    loss = rep_loss + att_loss
                    tr_att_loss += att_loss.item()
                    tr_rep_loss += rep_loss.item()
                else:
                    if output_mode == "classification":
                        cls_loss = soft_cross_entropy(
                            student_logits / args.temperature,
                            teacher_logits / args.temperature)
                    elif output_mode == "regression":
                        loss_mse = MSELoss()
                        cls_loss = loss_mse(student_logits.view(-1),
                                            label_ids.view(-1))

                    loss = cls_loss
                    tr_cls_loss += cls_loss.item()

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()
                tb.add_scalar("loss", loss.item(), global_step)
                tr_loss += loss.item()
                nb_tr_examples += label_ids.size(0)
                nb_tr_steps += 1

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if (global_step + 1) % int(
                        args.eval_step * num_train_optimization_steps) == 0:
                    logger.info("***** Running evaluation *****")
                    logger.info("  Epoch = {} iter {} step".format(
                        epoch_, global_step))
                    logger.info("  Num examples = %d", len(eval_data))
                    logger.info("  Batch size = %d", args.eval_batch_size)

                    student_model.eval()

                    loss = tr_loss / (step + 1)
                    cls_loss = tr_cls_loss / (step + 1)
                    att_loss = tr_att_loss / (step + 1)
                    rep_loss = tr_rep_loss / (step + 1)

                    result = {}
                    if args.pred_distill:
                        result = do_eval(student_model, task_name,
                                         eval_dataloader, device, output_mode,
                                         eval_labels, num_labels)
                    result['global_step'] = global_step
                    result['cls_loss'] = cls_loss
                    result['att_loss'] = att_loss
                    result['rep_loss'] = rep_loss
                    result['loss'] = loss

                    result_to_file(result, output_eval_file)

                    if not args.pred_distill:
                        save_model = True
                    else:
                        save_model = False

                        if task_name in acc_tasks and result[
                                'acc'] > best_dev_acc:
                            best_dev_acc = result['acc']
                            save_model = True

                        if task_name in corr_tasks and result[
                                'corr'] > best_dev_acc:
                            best_dev_acc = result['corr']
                            save_model = True

                        if task_name in mcc_tasks and result[
                                'mcc'] > best_dev_acc:
                            best_dev_acc = result['mcc']
                            save_model = True

                    if save_model:
                        logger.info("***** Save model *****")

                        model_to_save = student_model.module if hasattr(
                            student_model, 'module') else student_model

                        model_name = WEIGHTS_NAME
                        # if not args.pred_distill:
                        #     model_name = "step_{}_{}".format(global_step, WEIGHTS_NAME)
                        output_model_file = os.path.join(
                            args.output_dir, model_name)
                        output_config_file = os.path.join(
                            args.output_dir, CONFIG_NAME)

                        torch.save(model_to_save.state_dict(),
                                   output_model_file)
                        model_to_save.config.to_json_file(output_config_file)
                        tokenizer.save_vocabulary(args.output_dir)

                        # Test mnli-mm
                        if args.pred_distill and task_name == "mnli":
                            task_name = "mnli-mm"
                            if not os.path.exists(args.output_dir + '-MM'):
                                os.makedirs(args.output_dir + '-MM')

                            eval_data, eval_labels = get_tensor_data(
                                args, task_name, tokenizer, True, False)

                            eval_sampler = SequentialSampler(eval_data)
                            eval_dataloader = DataLoader(
                                eval_data,
                                sampler=eval_sampler,
                                batch_size=args.eval_batch_size)
                            logger.info("***** Running mm evaluation *****")
                            logger.info("  Num examples = %d", len(eval_data))
                            logger.info("  Batch size = %d",
                                        args.eval_batch_size)

                            result = do_eval(student_model, task_name,
                                             eval_dataloader, device,
                                             output_mode, eval_labels,
                                             num_labels)

                            result['global_step'] = global_step

                            tmp_output_eval_file = os.path.join(
                                args.output_dir + '-MM', "eval_results.txt")
                            result_to_file(result, tmp_output_eval_file)

                            task_name = 'mnli'

                    student_model.train()
Ejemplo n.º 12
0
import torch
from diffeopt.group.ddmatch.representation import FunctionRepresentation, DensityRepresentation
from diffeopt.group.ddmatch.group import DiffeoGroup
from diffeopt.sum_representation import get_sum_representation
from diffeopt.distance.information import information_distance
from torch.nn import MSELoss
from diffeopt.cometric.laplace import get_laplace_cometric
from diffeopt.utils import normalize

mse = MSELoss()

from diffeopt.optim import GroupOptimizer


def test_orbit_optimisation():
    shape = (16, 16)
    I0, I1 = [1 + torch.rand(*shape, dtype=torch.float64) for i in range(2)]
    group = DiffeoGroup(I0.shape)
    cometric = get_laplace_cometric(group, s=2)

    sum_rep = get_sum_representation(FunctionRepresentation(group),
                                     DensityRepresentation(group))
    oo = GroupOptimizer(sum_rep.parameters(), lr=.1, cometric=cometric)
    vol = normalize(torch.ones_like(I1))
    vol__ = vol + 1e-2 * torch.randn_like(vol)
    for i in range(2):
        oo.zero_grad()
        I_, vol_ = sum_rep(I0, vol)
        loss = mse(I_, I0) + information_distance(vol_, vol__)
        loss.backward()
        oo.step()
Ejemplo n.º 13
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        threshold=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        threshold (:obj:`float`):
            Threshold value (see :class:`~emmental.MaskedLinear`).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            threshold=threshold,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)
Ejemplo n.º 14
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        input_ids_pub=None,
        labels_pub=None,
        attention_mask_pub=None,
        token_type_ids_pub=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0][:,0,:] # take <s> token (equiv. to [CLS])
        # print(sequence_output.shape)

        # TextHide

        sequence_output_pub = None
        if input_ids_pub is not None:
            input_ids_pub = input_ids_pub[:len(input_ids)]  
            #token_type_ids_pub = token_type_ids_pub[:len(token_type_ids)] # truncate to match size
            outputs_pub = self.roberta(
                input_ids_pub,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids_pub,
                position_ids=position_ids,
            )
            sequence_output_pub = outputs_pub[0][:,0,:]

        if labels is not None:
            sequence_output, mix_labels, lams = mixup(
                sequence_output, labels, k=self.num_k, embeds_help=sequence_output_pub)
        
        sequence_output = self.apply_mask(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                # loss = loss_fct(logits.view(-1), labels.view(-1)) # commented this since mixup_criterion() has incorporated this function
            else:
                loss_fct = CrossEntropyLoss()
                # loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # commented this since mixup_criterion() has incorporated this function
            loss = mixup_criterion(
                loss_fct, logits, mix_labels, lams, self.num_labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
Ejemplo n.º 15
0
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import DeiTFeatureExtractor, DeiTForImageClassification
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> torch.manual_seed(3)  # doctest: +IGNORE_RESULT
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here,
        >>> # so the head will be randomly initialized, hence the predictions will be random
        >>> feature_extractor = DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224")
        >>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")

        >>> inputs = feature_extractor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        Predicted class: maillot
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output[:, 0, :])
        # we don't use the distillation token

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long
                                              or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels),
                                labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits, ) + outputs[2:]
            return ((loss, ) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
Ejemplo n.º 16
0
 def scalar_loss(self, prediction, target):
     return MSELoss(reduction='none')(prediction, target)
Ejemplo n.º 17
0
from torch.utils.data import DataLoader
from Model import time_dataset, collate

train_loader = DataLoader(dataset=time_dataset(X_train, y_train), batch_size=128, shuffle=False, collate_fn=collate)
val_loader = DataLoader(dataset=time_dataset(X_val, y_val), batch_size=64, shuffle=False, collate_fn=collate)

from Model import GGNN, Mol2NumNet_regressor
from time import time
from torch import optim
from torch.nn import MSELoss
from pytorch_tools import EarlyStopping

ode_gnn = GGNN(in_feats=4, n_hidden=50, out_feats=4, n_iter_readout=1).cuda() #recurrent_layer=3, output_dim=5).cuda()
ode_gnn = Mol2NumNet_regressor(node_input_dim=4, edge_input_dim=6, node_hidden_dim=12, edge_hidden_dim=20, n_classes=1).cuda()
optimizer = optim.Adam(ode_gnn.parameters(), lr=0.01)
criterion = MSELoss().cuda()
early_stopping = EarlyStopping(patience=20)


def train(model, epochs, loss_func, data_loader, val_data_loader):
    train_epochs_losses = []
    val_epoch_losses = []
    dur = []
    for epoch in range(epochs):
        model.train()
        train_epochs_loss = 0
        if epoch >= 1:
            t0 = time()
        for graph, state in data_loader:
            graph = graph.to(device)
            state = torch.stack(state).to(device, dtype=torch.float)
Ejemplo n.º 18
0
    def forward(self,
                input_ids,
                token_type_ids=None,
                attention_mask=None,
                head2labels=None,
                return_pooler_output=False,
                head2mask=None,
                nsp_loss_weights=None):

        device = "cuda" if torch.cuda.is_available() else "cpu"

        # Get logits
        output = self.bert(input_ids,
                           token_type_ids=token_type_ids,
                           attention_mask=attention_mask,
                           output_attentions=False,
                           output_hidden_states=False,
                           return_dict=True)
        pooled_output = self.dropout(output["pooler_output"]).to(device)

        head2logits = {}
        return_dict = {}
        for head_name, head in self.heads.items():
            head2logits[head_name] = self.heads[head_name](pooled_output)
            head2logits[head_name] = head2logits[head_name].float()
            return_dict[head_name + "_logits"] = head2logits[head_name]

        if head2labels is not None:
            for head_name, labels in head2labels.items():
                num_classes = head2logits[head_name].shape[1]

                # Regression (e.g. for politeness)
                if num_classes == 1:

                    # Only consider positive examples
                    if head2mask is not None and head_name in head2mask:
                        num_positives = head2labels[head2mask[head_name]].sum(
                        )  # use certain labels as mask
                        if num_positives == 0:
                            return_dict[head_name + "_loss"] = torch.tensor(
                                [0]).to(device)
                        else:
                            loss_fct = MSELoss(reduction='none')
                            loss = loss_fct(head2logits[head_name].view(-1),
                                            labels.float().view(-1))
                            return_dict[head_name + "_loss"] = loss.dot(
                                head2labels[head2mask[head_name]].float().view(
                                    -1)) / num_positives
                    else:
                        loss_fct = MSELoss()
                        return_dict[head_name + "_loss"] = loss_fct(
                            head2logits[head_name].view(-1),
                            labels.float().view(-1))
                else:
                    loss_fct = CrossEntropyLoss(
                        weight=nsp_loss_weights.float())
                    return_dict[head_name + "_loss"] = loss_fct(
                        head2logits[head_name], labels.view(-1))

        if return_pooler_output:
            return_dict["pooler_output"] = output["pooler_output"]

        return return_dict
Ejemplo n.º 19
0
    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape[:2]
        else:
            batch_size, sequence_length = inputs_embeds.shape[:2]

        assert (
            self.config.pad_token_id is not None or batch_size == 1
        ), "Cannot handle batch sizes > 1 if no padding token is defined."
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = torch.ne(
                    input_ids, self.config.pad_token_id).sum(-1) - 1
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    f"unexpected if using padding tokens in conjuction with `inputs_embeds.`"
                )

        pooled_logits = logits[range(batch_size), sequence_lengths]

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(pooled_logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels),
                                labels.view(-1))

        if not return_dict:
            output = (pooled_logits, ) + transformer_outputs[1:]
            return ((loss, ) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
Ejemplo n.º 20
0
class YOLOLayer(Module):
    """Detection layer"""
    def __init__(self, anchors, num_classes, img_dim):
        super(YOLOLayer, self).__init__()
        self.anchors = anchors
        self.num_anchors = len(anchors)
        self.num_classes = num_classes
        self.bbox_attrs = 5 + num_classes
        self.img_dim = img_dim
        self.ignore_thres = 0.5
        self.lambda_coord = 1

        self.mse_loss = MSELoss()
        self.bce_loss = BCELoss()

    def forward(self, x, targets=None):
        bs = x.size(0)
        g_dim = x.size(2)
        stride =  self.img_dim / g_dim
        # Tensors for cuda support
        FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
        LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor

        prediction = x.view(bs,  self.num_anchors, self.bbox_attrs, g_dim, g_dim).permute(0, 1, 3, 4, 2).contiguous()

        # Get outputs
        x = torch.sigmoid(prediction[..., 0])          # Center x
        y = torch.sigmoid(prediction[..., 1])          # Center y
        w = prediction[..., 2]                         # Width
        h = prediction[..., 3]                         # Height
        conf = torch.sigmoid(prediction[..., 4])       # Conf
        pred_cls = torch.sigmoid(prediction[..., 5:])  # Cls pred.

        # Calculate offsets for each grid
        grid_x = torch.linspace(0, g_dim-1, g_dim).repeat(g_dim,1).repeat(bs*self.num_anchors, 1, 1).view(x.shape).type(FloatTensor)
        grid_y = torch.linspace(0, g_dim-1, g_dim).repeat(g_dim,1).t().repeat(bs*self.num_anchors, 1, 1).view(y.shape).type(FloatTensor)
        scaled_anchors = [(a_w / stride, a_h / stride) for a_w, a_h in self.anchors]
        anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
        anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
        anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, g_dim*g_dim).view(w.shape)
        anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, g_dim*g_dim).view(h.shape)

        # Add offset and scale with anchors
        pred_boxes = FloatTensor(prediction[..., :4].shape)
        pred_boxes[..., 0] = x.data + grid_x
        pred_boxes[..., 1] = y.data + grid_y
        pred_boxes[..., 2] = torch.exp(w.data) * anchor_w
        pred_boxes[..., 3] = torch.exp(h.data) * anchor_h

        # Training
        if targets is not None:

            if x.is_cuda:
                self.mse_loss = self.mse_loss.cuda()
                self.bce_loss = self.bce_loss.cuda()

            nGT, nCorrect, mask, conf_mask, tx, ty, tw, th, tconf, tcls = build_targets(pred_boxes.cpu().data,
                                                                                        targets.cpu().data,
                                                                                        scaled_anchors,
                                                                                        self.num_anchors,
                                                                                        self.num_classes,
                                                                                        g_dim,
                                                                                        self.ignore_thres,
                                                                                        self.img_dim)

            nProposals = int((conf > 0.25).sum().item())
            recall = float(nCorrect / nGT) if nGT else 1

            # Handle masks
            mask = Variable(mask.type(FloatTensor))
            cls_mask = Variable(mask.unsqueeze(-1).repeat(1, 1, 1, 1, self.num_classes).type(FloatTensor))
            conf_mask = Variable(conf_mask.type(FloatTensor))

            # Handle target variables
            tx    = Variable(tx.type(FloatTensor), requires_grad=False)
            ty    = Variable(ty.type(FloatTensor), requires_grad=False)
            tw    = Variable(tw.type(FloatTensor), requires_grad=False)
            th    = Variable(th.type(FloatTensor), requires_grad=False)
            tconf = Variable(tconf.type(FloatTensor), requires_grad=False)
            tcls  = Variable(tcls.type(FloatTensor), requires_grad=False)

            # Mask outputs to ignore non-existing objects
            loss_x = self.lambda_coord * self.bce_loss(x * mask, tx * mask)
            loss_y = self.lambda_coord * self.bce_loss(y * mask, ty * mask)
            loss_w = self.lambda_coord * self.mse_loss(w * mask, tw * mask) / 2
            loss_h = self.lambda_coord * self.mse_loss(h * mask, th * mask) / 2
            loss_conf = self.bce_loss(conf * conf_mask, tconf * conf_mask)
            loss_cls = self.bce_loss(pred_cls * cls_mask, tcls * cls_mask)
            loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls

            return loss, loss_x.item(), loss_y.item(), loss_w.item(), loss_h.item(), loss_conf.item(), loss_cls.item(), recall

        else:
            # If not in training phase return predictions
            output = torch.cat((pred_boxes.view(bs, -1, 4) * stride, conf.view(bs, -1, 1), pred_cls.view(bs, -1, self.num_classes)), -1)
            return output.data
def main():
    parser = build_argparse()
    parser.add_argument('--kd_decay', type=float, default=0.999)
    parser.add_argument('--kd_coeff', type=float, default=1.0)
    args = parser.parse_args()
    # output dir
    if args.model_name is None:
        args.model_name = args.model_path.split("/")[-1]
    args.output_dir = args.output_dir + '{}'.format(args.model_name)
    os.makedirs(args.output_dir, exist_ok=True)
    prefix = "_".join([args.model_name, args.task_name])
    logger = TrainLogger(log_dir=args.output_dir, prefix=prefix)
    # device
    logger.info("initializing device")
    args.device, args.n_gpu = prepare_device(args.gpu, args.local_rank)
    seed_everything(args.seed)
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    # data processor
    logger.info("initializing data processor")
    tokenizer = tokenizer_class.from_pretrained(
        args.model_path, do_lower_case=args.do_lower_case)
    processor = ColaProcessor(data_dir=args.data_dir,
                              tokenizer=tokenizer,
                              prefix=prefix)
    label_list = processor.get_labels()
    num_labels = len(label_list)
    args.num_labels = num_labels
    # model
    logger.info("initializing model and config")
    config = config_class.from_pretrained(
        args.model_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_path, config=config)
    model.to(args.device)

    # trainer
    logger.info("initializing traniner")
    trainer = SDATrainer(logger=logger,
                         args=args,
                         collate_fn=processor.collate_fn,
                         input_keys=processor.get_input_keys(),
                         kd_model=copy.deepcopy(model),
                         kd_loss_fct=MSELoss(),
                         metrics=[MattewsCorrcoef()])
    # do train
    if args.do_train:
        train_dataset = processor.create_dataset(args.train_max_seq_length,
                                                 'train.tsv', 'train')
        eval_dataset = processor.create_dataset(args.eval_max_seq_length,
                                                'dev.tsv', 'dev')
        trainer.train(model,
                      train_dataset=train_dataset,
                      eval_dataset=eval_dataset)

    if args.do_eval and args.local_rank in [-1, 0]:
        results = {}
        eval_dataset = processor.create_dataset(args.eval_max_seq_length,
                                                'dev.tsv', 'dev')
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints or args.checkpoint_number > 0:
            checkpoints = get_checkpoints(args.output_dir,
                                          args.checkpoint_number, WEIGHTS_NAME)
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("/")[-1].split("-")[-1]
            model = model_class.from_pretrained(checkpoint, config=config)
            model.to(args.device)
            trainer.evaluate(model,
                             eval_dataset,
                             save_preds=True,
                             prefix=str(global_step))
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in trainer.records['result'].items()
                }
                results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        dict_to_text(output_eval_file, results)

    if args.do_predict:
        test_dataset = processor.create_dataset(args.eval_max_seq_length,
                                                'test.tsv', 'test')
        if args.checkpoint_number == 0:
            raise ValueError("checkpoint number should > 0,but get %d",
                             args.checkpoint_number)
        checkpoints = get_checkpoints(args.output_dir, args.checkpoint_number,
                                      WEIGHTS_NAME)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("/")[-1].split("-")[-1]
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            trainer.predict(model,
                            test_dataset=test_dataset,
                            prefix=str(global_step))
def main():
    parser = ArgumentParser()
    parser.add_argument(
        '--pregenerated_data',
        type=str,
        required=True,
        default='/nas/hebin/data/english-exp/books_wiki_tokens_ngrams')
    parser.add_argument('--s3_output_dir', type=str, default='huawei_yun')
    parser.add_argument('--student_model',
                        type=str,
                        default='8layer_bert',
                        required=True)
    parser.add_argument('--teacher_model', type=str, default='electra_base')
    parser.add_argument('--cache_dir', type=str, default='/cache', help='')

    parser.add_argument("--epochs",
                        type=int,
                        default=2,
                        help="Number of epochs to train for")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=1e-4,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--max_seq_length", type=int, default=512)

    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--scratch',
                        action='store_true',
                        help="Whether to train from scratch")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument('--debug',
                        action='store_true',
                        help="Whether to debug")

    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )

    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument("--already_trained_epoch", default=0, type=int)
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.0,
        help="Probability of masking each token for the LM task")
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=77,
        help="Maximum number of tokens to mask in each sequence")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--logging_steps",
                        type=int,
                        default=500,
                        help="Log every X updates steps.")
    parser.add_argument("--warmup_steps",
                        default=10000,
                        type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")

    parser.add_argument("--num_workers",
                        type=int,
                        default=4,
                        help="num_workers.")
    parser.add_argument("--continue_index", type=int, default=0, help="")
    parser.add_argument("--threads",
                        type=int,
                        default=27,
                        help="Number of threads to preprocess input data")

    # Search space for sub_bart architecture
    parser.add_argument('--layer_num_space',
                        nargs='+',
                        type=int,
                        default=[1, 8])
    parser.add_argument('--hidden_size_space',
                        nargs='+',
                        type=int,
                        default=[128, 768])
    parser.add_argument('--qkv_size_space',
                        nargs='+',
                        type=int,
                        default=[180, 768])
    parser.add_argument('--intermediate_size_space',
                        nargs='+',
                        type=int,
                        default=[128, 3072])
    parser.add_argument('--head_num_space',
                        nargs='+',
                        type=int,
                        default=[1, 12])
    parser.add_argument('--sample_times_per_batch', type=int, default=1)
    parser.add_argument('--further_train', action='store_true')
    parser.add_argument('--mlm_loss', action='store_true')

    # Argument for Huawei yun
    parser.add_argument('--data_url', type=str, default='', help='s3 url')
    parser.add_argument("--train_url", type=str, default="", help="s3 url")

    args = parser.parse_args()

    assert (torch.cuda.is_available())
    device_count = torch.cuda.device_count()
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))

    # Call the init process
    # init_method = 'tcp://'
    init_method = ''
    master_ip = os.getenv('MASTER_ADDR', 'localhost')
    master_port = os.getenv('MASTER_PORT', '6000')
    init_method += master_ip + ':' + master_port

    # Manually set the device ids.
    # if device_count > 0:
    # args.local_rank = args.rank % device_count
    torch.cuda.set_device(args.local_rank)
    device = torch.device("cuda", args.local_rank)
    print('device_id: %s' % args.local_rank)
    print('device_count: %s, rank: %s, world_size: %s' %
          (device_count, args.rank, args.world_size))
    print(init_method)

    torch.distributed.init_process_group(backend='nccl',
                                         world_size=args.world_size,
                                         rank=args.rank,
                                         init_method=init_method)

    LOCAL_DIR = args.cache_dir
    if oncloud:
        assert mox.file.exists(LOCAL_DIR)

    if args.local_rank == 0 and oncloud:
        logging.info(
            mox.file.list_directory(args.pregenerated_data, recursive=True))
        logging.info(
            mox.file.list_directory(args.student_model, recursive=True))

    local_save_dir = os.path.join(LOCAL_DIR, 'output', 'superbert',
                                  'checkpoints')
    local_tsbd_dir = os.path.join(LOCAL_DIR, 'output', 'superbert',
                                  'tensorboard')
    save_name = '_'.join([
        'superbert',
        'epoch',
        str(args.epochs),
        'lr',
        str(args.learning_rate),
        'bsz',
        str(args.train_batch_size),
        'grad_accu',
        str(args.gradient_accumulation_steps),
        str(args.max_seq_length),
        'gpu',
        str(args.world_size),
    ])
    bash_save_dir = os.path.join(local_save_dir, save_name)
    bash_tsbd_dir = os.path.join(local_tsbd_dir, save_name)
    if args.local_rank == 0:
        if not os.path.exists(bash_save_dir):
            os.makedirs(bash_save_dir)
            logger.info(bash_save_dir + ' created!')
        if not os.path.exists(bash_tsbd_dir):
            os.makedirs(bash_tsbd_dir)
            logger.info(bash_tsbd_dir + ' created!')

    local_data_dir_tmp = '/cache/data/tmp/'
    local_data_dir = local_data_dir_tmp + save_name

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    args.tokenizer = BertTokenizer.from_pretrained(
        args.student_model, do_lower_case=args.do_lower_case)
    args.vocab_list = list(args.tokenizer.vocab.keys())

    config = BertConfig.from_pretrained(
        os.path.join(args.student_model, CONFIG_NAME))
    logger.info("Model config {}".format(config))

    if args.further_train:
        if args.mlm_loss:
            student_model = SuperBertForPreTraining.from_pretrained(
                args.student_model, config)
        else:
            student_model = SuperTinyBertForPreTraining.from_pretrained(
                args.student_model, config)
    else:
        if args.mlm_loss:
            student_model = SuperBertForPreTraining.from_scratch(
                args.student_model, config)
        else:
            student_model = SuperTinyBertForPreTraining.from_scratch(
                args.student_model, config)

    student_model.to(device)

    if not args.mlm_loss:
        teacher_model = BertModel.from_pretrained(args.teacher_model)
        teacher_model.to(device)

    # build arch space
    min_hidden_size, max_hidden_size = args.hidden_size_space
    min_ffn_size, max_ffn_size = args.intermediate_size_space
    min_qkv_size, max_qkv_size = args.qkv_size_space
    min_head_num, max_head_num = args.head_num_space

    hidden_step = 4
    ffn_step = 4
    qkv_step = 12
    head_step = 1

    number_hidden_step = int((max_hidden_size - min_hidden_size) / hidden_step)
    number_ffn_step = int((max_ffn_size - min_ffn_size) / ffn_step)
    number_qkv_step = int((max_qkv_size - min_qkv_size) / qkv_step)
    number_head_step = int((max_head_num - min_head_num) / head_step)

    layer_numbers = list(
        range(args.layer_num_space[0], args.layer_num_space[1] + 1))
    hidden_sizes = [
        i * hidden_step + min_hidden_size
        for i in range(number_hidden_step + 1)
    ]
    ffn_sizes = [
        i * ffn_step + min_ffn_size for i in range(number_ffn_step + 1)
    ]
    qkv_sizes = [
        i * qkv_step + min_qkv_size for i in range(number_qkv_step + 1)
    ]
    head_numbers = [
        i * head_step + min_head_num for i in range(number_head_step + 1)
    ]

    ######
    if args.local_rank == 0:
        tb_writer = SummaryWriter(bash_tsbd_dir)

    global_step = 0
    step = 0
    tr_loss, tr_rep_loss, tr_att_loss = 0.0, 0.0, 0.0
    logging_loss, rep_logging_loss, att_logging_loss = 0.0, 0.0, 0.0
    end_time, start_time = 0, 0

    submodel_config = dict()

    if args.further_train:
        submodel_config['sample_layer_num'] = config.num_hidden_layers
        submodel_config['sample_hidden_size'] = config.hidden_size
        submodel_config[
            'sample_intermediate_sizes'] = config.num_hidden_layers * [
                config.intermediate_size
            ]
        submodel_config[
            'sample_num_attention_heads'] = config.num_hidden_layers * [
                config.num_attention_heads
            ]
        submodel_config['sample_qkv_sizes'] = config.num_hidden_layers * [
            config.qkv_size
        ]

    for epoch in range(args.epochs):
        if epoch < args.continue_index:
            args.warmup_steps = 0
            continue

        args.local_data_dir = os.path.join(local_data_dir, str(epoch))
        if args.local_rank == 0:
            os.makedirs(args.local_data_dir)
        while 1:
            if os.path.exists(args.local_data_dir):
                epoch_dataset = load_doc_tokens_ngrams(args)
                break

        if args.local_rank == 0 and oncloud:
            logging.info('Dataset in epoch %s', epoch)
            logging.info(
                mox.file.list_directory(args.local_data_dir, recursive=True))

        train_sampler = DistributedSampler(epoch_dataset,
                                           num_replicas=1,
                                           rank=0)

        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        step_in_each_epoch = len(
            train_dataloader) // args.gradient_accumulation_steps
        num_train_optimization_steps = step_in_each_epoch * args.epochs
        logging.info("***** Running training *****")
        logging.info("  Num examples = %d",
                     len(epoch_dataset) * args.world_size)
        logger.info("  Num Epochs = %d", args.epochs)
        logging.info(
            "  Total train batch size (w. parallel, distributed & accumulation) = %d",
            args.train_batch_size * args.gradient_accumulation_steps *
            args.world_size)
        logger.info("  Gradient Accumulation steps = %d",
                    args.gradient_accumulation_steps)
        logging.info("  Num steps = %d", num_train_optimization_steps)

        if epoch == args.continue_index:
            # Prepare optimizer
            param_optimizer = list(student_model.named_parameters())
            no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]

            warm_up_ratio = args.warmup_steps / num_train_optimization_steps
            print('warm_up_ratio: {}'.format(warm_up_ratio))
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 e=args.adam_epsilon,
                                 schedule='warmup_linear',
                                 t_total=num_train_optimization_steps,
                                 warmup=warm_up_ratio)

            if args.fp16:
                try:
                    from apex import amp
                except ImportError:
                    raise ImportError(
                        "Please install apex from https://www.github.com/nvidia/apex"
                        " to use fp16 training.")
                student_model, optimizer = amp.initialize(
                    student_model,
                    optimizer,
                    opt_level=args.fp16_opt_level,
                    min_loss_scale=1)  #

            # apex
            student_model = DDP(
                student_model,
                message_size=10000000,
                gradient_predivide_factor=torch.distributed.get_world_size(),
                delay_allreduce=True)

            if not args.mlm_loss:
                teacher_model = DDP(teacher_model,
                                    message_size=10000000,
                                    gradient_predivide_factor=torch.
                                    distributed.get_world_size(),
                                    delay_allreduce=True)
                teacher_model.eval()

            logger.info('apex data paralleled!')

        from torch.nn import MSELoss
        loss_mse = MSELoss()

        student_model.train()
        for step_, batch in enumerate(train_dataloader):
            step += 1
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_masks, lm_label_ids = batch

            if not args.mlm_loss:
                teacher_last_rep, teacher_last_att = teacher_model(
                    input_ids, input_masks)
                teacher_last_att = torch.where(
                    teacher_last_att <= -1e2,
                    torch.zeros_like(teacher_last_att).to(device),
                    teacher_last_att)
                teacher_last_rep.detach()
                teacher_last_att.detach()

            for sample_idx in range(args.sample_times_per_batch):
                att_loss = 0.
                rep_loss = 0.
                rand_seed = int(global_step * args.world_size +
                                sample_idx)  # + args.rank % args.world_size)

                if not args.mlm_loss:
                    if not args.further_train:
                        submodel_config = sample_arch_4_kd(
                            layer_numbers,
                            hidden_sizes,
                            ffn_sizes,
                            qkv_sizes,
                            reset_rand_seed=True,
                            rand_seed=rand_seed)
                    # knowledge distillation
                    student_last_rep, student_last_att = student_model(
                        input_ids, submodel_config, attention_mask=input_masks)
                    student_last_att = torch.where(
                        student_last_att <= -1e2,
                        torch.zeros_like(student_last_att).to(device),
                        student_last_att)

                    att_loss += loss_mse(student_last_att, teacher_last_att)
                    rep_loss += loss_mse(student_last_rep, teacher_last_rep)
                    loss = att_loss + rep_loss

                    if args.gradient_accumulation_steps > 1:
                        rep_loss = rep_loss / args.gradient_accumulation_steps
                        att_loss = att_loss / args.gradient_accumulation_steps
                        loss = loss / args.gradient_accumulation_steps

                    tr_rep_loss += rep_loss.item()
                    tr_att_loss += att_loss.item()
                else:
                    if not args.further_train:
                        submodel_config = sample_arch_4_mlm(
                            layer_numbers,
                            hidden_sizes,
                            ffn_sizes,
                            head_numbers,
                            reset_rand_seed=True,
                            rand_seed=rand_seed)
                    loss = student_model(input_ids,
                                         submodel_config,
                                         attention_mask=input_masks,
                                         masked_lm_labels=lm_label_ids)

                tr_loss += loss.item()
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward(retain_graph=True)
                else:
                    loss.backward(retain_graph=True)

            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(student_model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

                if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0 \
                        and args.local_rank < 2 or global_step < 100:
                    end_time = time.time()

                    if not args.mlm_loss:
                        logger.info(
                            'Epoch: %s, global_step: %s/%s, lr: %s, loss is %s; '
                            'rep_loss is %s; att_loss is %s; (%.2f sec)' %
                            (epoch, global_step + 1, step_in_each_epoch,
                             optimizer.get_lr()[0],
                             loss.item() * args.gradient_accumulation_steps,
                             rep_loss.item() *
                             args.gradient_accumulation_steps, att_loss.item()
                             * args.gradient_accumulation_steps,
                             end_time - start_time))
                    else:
                        logger.info(
                            'Epoch: %s, global_step: %s/%s, lr: %s, loss is %s; '
                            ' (%.2f sec)' %
                            (epoch, global_step + 1, step_in_each_epoch,
                             optimizer.get_lr()[0],
                             loss.item() * args.gradient_accumulation_steps,
                             end_time - start_time))
                    start_time = time.time()

                if args.logging_steps > 0 and global_step % args.logging_steps == 0 and args.local_rank == 0:
                    tb_writer.add_scalar("lr",
                                         optimizer.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) /
                                         args.logging_steps, global_step)

                    if not args.mlm_loss:
                        tb_writer.add_scalar("rep_loss",
                                             (tr_rep_loss - rep_logging_loss) /
                                             args.logging_steps, global_step)
                        tb_writer.add_scalar("att_loss",
                                             (tr_att_loss - att_logging_loss) /
                                             args.logging_steps, global_step)
                        rep_logging_loss = tr_rep_loss
                        att_logging_loss = tr_att_loss

                    logging_loss = tr_loss

        # Save a trained model
        if args.rank == 0:
            saving_path = bash_save_dir
            saving_path = Path(os.path.join(saving_path,
                                            "epoch_" + str(epoch)))

            if saving_path.is_dir() and list(saving_path.iterdir()):
                logging.warning(
                    f"Output directory ({ saving_path }) already exists and is not empty!"
                )
            saving_path.mkdir(parents=True, exist_ok=True)

            logging.info("** ** * Saving fine-tuned model ** ** * ")
            model_to_save = student_model.module if hasattr(student_model, 'module')\
                else student_model  # Only save the model it-self

            output_model_file = os.path.join(saving_path, WEIGHTS_NAME)
            output_config_file = os.path.join(saving_path, CONFIG_NAME)

            torch.save(model_to_save.state_dict(), output_model_file)
            model_to_save.config.to_json_file(output_config_file)
            args.tokenizer.save_vocabulary(saving_path)

            torch.save(optimizer.state_dict(),
                       os.path.join(saving_path, "optimizer.pt"))
            logger.info("Saving optimizer and scheduler states to %s",
                        saving_path)

            # debug
            if oncloud:
                local_output_dir = os.path.join(LOCAL_DIR, 'output')
                logger.info(
                    mox.file.list_directory(local_output_dir, recursive=True))
                logger.info('s3_output_dir: ' + args.s3_output_dir)
                mox.file.copy_parallel(local_output_dir, args.s3_output_dir)

    if args.local_rank == 0:
        tb_writer.close()
Ejemplo n.º 23
0
    def forward(
        self,
        pixel_values=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples::

            >>> from transformers import SegformerFeatureExtractor, SegformerForImageClassification
            >>> from PIL import Image
            >>> import requests

            >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
            >>> image = Image.open(requests.get(url, stream=True).raw)

            >>> feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/mit-b0')
            >>> model = SegformerForImageClassification.from_pretrained('nvidia/mit-b0')

            >>> inputs = feature_extractor(images=image, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
            >>> # model predicts one of the 1000 ImageNet classes
            >>> predicted_class_idx = logits.argmax(-1).item()
            >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.segformer(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        # reshape last hidden states to (batch_size, height*width, hidden_size)
        batch_size = sequence_output.shape[0]
        sequence_output = sequence_output.reshape(batch_size, -1,
                                                  self.config.hidden_sizes[-1])

        # global average pooling
        sequence_output = sequence_output.mean(dim=1)

        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels),
                                labels.view(-1))

        if not return_dict:
            output = (logits, ) + outputs[1:]
            return ((loss, ) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    def train(self):
        step = 0
        validation_step = 0
        writer = SummaryWriter(properties.prep_tensor_board)
        temp_optimizer = optim.Adam(
            self.prep_model.parameters(), lr=0.01, weight_decay=0)
        temp_loss_fn = MSELoss().to(self.device)
        self.prep_model.train()
        for image, labels, names in self.loader_train:
            self.prep_model.zero_grad()
            X_var = image.to(self.device)
            preds = self.prep_model(X_var)
            loss = temp_loss_fn(preds, X_var)
            loss.backward()
            temp_optimizer.step()

        for epoch in range(self.epochs):
            training_loss = 0
            self.prep_model.train()
            for image, label_dict, names in self.loader_train:
                self.prep_model.zero_grad()

                X_var = image.to(self.device)
                pred = self.prep_model(X_var)
                text_crops, labels = get_text_stack(
                    pred[0], label_dict[0], self.input_size)
                batch, c, h, w = text_crops.shape
                grads = torch.zeros_like(text_crops).to(self.device)
                batch_loss = 0
                for i in range(batch):
                    noise = torch.randn(
                        size=(self.p_samples, c, h, w)).to(self.device)
                    noise = torch.cat((noise, -noise), dim=0)
                    noisy_imgs = text_crops[i] + (noise*self.std)
                    noisy_imgs = noisy_imgs.view(2*self.p_samples, c, -1)
                    noisy_imgs -= noisy_imgs.min(2, keepdim=True)[0]
                    noisy_imgs /= noisy_imgs.max(2, keepdim=True)[0]
                    noisy_imgs = noisy_imgs.view(2*self.p_samples, c, h, w)
                    noisy_labels = self.ocr.get_labels(
                        noisy_imgs.detach().cpu())
                    loss = self._get_cer(
                        noisy_labels, [labels[i]]*2*self.p_samples)
                    mean_loss = loss.mean(dim=0)
                    batch_loss += mean_loss.item()
                    loss = loss.unsqueeze(1).unsqueeze(1).unsqueeze(1)
                    loss = noise*loss.to(self.device)
                    loss = torch.div(loss.mean(dim=0), self.std)
                    grads[i] += loss
                training_loss += (batch_loss/batch)
                sec_loss = self.secondary_loss_fn(pred, torch.ones(
                    pred.shape).to(self.device))*self.sec_loss_scalar
                sec_loss.backward(retain_graph=True)
                text_crops.backward(grads)
                self.optimizer.step()

                if step % 500 == 0:
                    print("Iteration: %d => %f" % (step, batch_loss/batch))
                step += 1

            writer.add_scalar('Training Loss', training_loss /
                              self.train_set_size, epoch + 1)

            self.prep_model.eval()
            validation_loss = 0
            tess_crt_count = 0
            tess_CER = 0
            label_count = 0
            with torch.no_grad():
                for image, label_dict in self.loader_validation:
                    X_var = image.to(self.device)
                    pred = self.prep_model(X_var)
                    text_crops, labels = get_text_stack(
                        pred[0], label_dict[0], self.input_size)
                    ocr_labels = self.ocr.get_labels(text_crops.detach().cpu())
                    loss = self._get_cer(ocr_labels, labels)
                    mean_loss = loss.mean(dim=0)
                    validation_loss += mean_loss.item()

                    tess_crt, tess_cer = compare_labels(ocr_labels, labels)
                    tess_crt_count += tess_crt
                    tess_CER += tess_cer
                    validation_step += 1
                    label_count += len(labels)
            writer.add_scalar('Accuracy/'+self.ocr_name+'_output',
                              tess_crt_count/label_count, epoch + 1)
            writer.add_scalar('Validation Loss',
                              validation_loss/self.val_set_size, epoch + 1)

            save_img(pred.cpu(), 'out_' +
                     str(epoch), properties.img_out_path)
            if epoch == 0:
                save_img(image.cpu(), 'out_original', properties.img_out_path)

            print("%s correct count: %d; (validation set size:%d)" % (
                self.ocr_name, tess_crt_count, label_count))
            print("%s CER: %d;" % (self.ocr_name, tess_CER))
            print("Epoch: %d/%d => Training loss: %f | Validation loss: %f" % ((epoch + 1),
                                                                               self.epochs, training_loss /
                                                                               (self.train_set_size //
                                                                                self.batch_size),
                                                                               validation_loss/(self.val_set_size//self.batch_size)))
            torch.save(self.prep_model,
                       properties.prep_model_path + "Prep_model_"+str(epoch))
        writer.flush()
        writer.close()
Ejemplo n.º 25
0
    def evaluate(self, model, examples):
        """
        Evaluate the model.
        Parameters
        ----------
        model: BertModel
            The model to be evaluated.
        examples: list
            Evaluation data as a list of InputExample's/
        Returns
        -------
        evaluation_df: pd.DataFrame
            A dataframe that includes for each example predicted probability and labels.
        """

        eval_loader = self.get_loader(examples, phase='eval')

        logger.info("***** Running evaluation ***** ")
        logger.info("  Num examples = %d", len(examples))
        logger.info("  Batch size = %d", self.config.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        predictions = []
        labels = []
        agree_levels = []
        text_ids = []

        for input_ids, attention_mask, token_type_ids, label_ids, agree_ids in tqdm(
                eval_loader, desc="Testing"):
            input_ids = input_ids.to(self.device)
            attention_mask = attention_mask.to(self.device)
            token_type_ids = token_type_ids.to(self.device)
            label_ids = label_ids.to(self.device)
            agree_ids = agree_ids.to(self.device)

            with torch.no_grad():
                logits = model(input_ids, attention_mask, token_type_ids)[0]

                if self.config.output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    tmp_eval_loss = loss_fct(logits.view(-1, self.num_labels),
                                             label_ids.view(-1))
                elif self.config.output_mode == "regression":
                    loss_fct = MSELoss()
                    tmp_eval_loss = loss_fct(logits.view(-1),
                                             label_ids.view(-1))

                np_logits = logits.cpu().numpy()

                if self.config.output_mode == 'classification':
                    prediction = np.array(np_logits)
                elif self.config.output_mode == "regression":
                    prediction = np.array(np_logits)

                for agree_id in agree_ids:
                    agree_levels.append(agree_id.item())

                for label_id in label_ids:
                    labels.append(label_id.item())

                for pred in prediction:
                    predictions.append(pred)

                text_ids.append(input_ids)

                # tmp_eval_loss = loss_fct(logits.view(-1, self.num_labels), label_ids.view(-1))
                # tmp_eval_loss = model(input_ids, token_type_ids, attention_mask, label_ids)

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1

            # logits = logits.detach().cpu().numpy()
            # label_ids = label_ids.to('cpu').numpy()
            # tmp_eval_accuracy = accuracy(logits, label_ids)

            # eval_loss += tmp_eval_loss.mean().item()
            # eval_accuracy += tmp_eval_accuracy

        evaluation_df = pd.DataFrame({
            'predictions': predictions,
            'labels': labels,
            "agree_levels": agree_levels
        })

        return evaluation_df
Ejemplo n.º 26
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        encoder_layer = outputs[0]
        pooled_output = self.pooler(encoder_layer)
        pooled_output = self.drop(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.n_labels == 1:
                    # regression task
                    loss_fn = nn.MSELoss()
                    logits = logits.view(-1).to(labels.dtype)
                    loss = loss_fn(logits, labels.view(-1))
                elif labels.dim() == 1 or labels.size(-1) == 1:
                    label_index = (labels >= 0).nonzero()
                    labels = labels.long()
                    if label_index.size(0) > 0:
                        labeled_logits = torch.gather(
                            logits, 0, label_index.expand(label_index.size(0), logits.size(1))
                        )
                        labels = torch.gather(labels, 0, label_index.view(-1))
                        loss_fct = CrossEntropyLoss()
                        loss = loss_fct(
                            labeled_logits.view(-1, self.n_labels).float(), labels.view(-1)
                        )
                    else:
                        loss = torch.tensor(0).to(logits)
                else:
                    log_softmax = nn.LogSoftmax(-1)
                    loss = -((log_softmax(logits) * labels).sum(-1)).mean()
            elif self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.n_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.n_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hiddens=outputs.hiddens,
            attns=outputs.attns,
        )
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir",
                        default='data/',
                        type=str,
                        help="The data directory.")
    parser.add_argument("--model_dir",
                        default='models/',
                        type=str,
                        help="The models directory.")
    parser.add_argument("--teacher_model",
                        default=None,
                        type=str,
                        help="The models directory.")
    parser.add_argument("--student_model",
                        default=None,
                        type=str,
                        help="The models directory.")
    parser.add_argument(
        "--output_dir",
        default='output',
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help="Squadv2.0 if true else Squadv1.1 ")

    # default
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", default=0, type=int)
    parser.add_argument(
        '--null_score_diff_threshold',
        type=float,
        default=0.0,
        help=
        "If null_score - best_non_null is greater than the threshold predict null."
    )
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--do_lower_case',
        #action='store_true',
        default=True,
        help="do lower case")

    parser.add_argument("--per_gpu_batch_size",
                        default=16,
                        type=int,
                        help="Per GPU batch size for training.")
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument('--eval_step',
                        type=int,
                        default=200,
                        help="Evaluate every X training steps")

    parser.add_argument('--pred_distill',
                        action='store_true',
                        help="Whether to distil with task layer")
    parser.add_argument('--intermediate_distill',
                        action='store_true',
                        help="Whether to distil with intermediate layers")
    parser.add_argument('--save_fp_model',
                        action='store_true',
                        help="Whether to save fp32 model")
    parser.add_argument('--save_quantized_model',
                        action='store_true',
                        help="Whether to save quantized model")

    parser.add_argument("--weight_bits",
                        default=2,
                        type=int,
                        choices=[2, 8],
                        help="Quantization bits for weight.")
    parser.add_argument("--input_bits",
                        default=8,
                        type=int,
                        help="Quantization bits for activation.")
    parser.add_argument("--clip_val",
                        default=2.5,
                        type=float,
                        help="Initial clip value.")

    args = parser.parse_args()
    summaryWriter = SummaryWriter(args.output_dir)

    if args.teacher_model is None:
        args.teacher_model = args.model_dir
    if args.student_model is None:
        args.student_model = args.model_dir

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.n_gpu = torch.cuda.device_count()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    args.batch_size = args.n_gpu * args.per_gpu_batch_size

    logger.info(f'The args: {args}')
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.teacher_model,
                                              do_lower_case=True)

    # preparing training data
    input_file = 'train-v2.0' if args.version_2_with_negative else 'train-v1.1'
    input_file = os.path.join(args.data_dir, input_file)
    if os.path.exists(input_file):
        train_features = pickle.load(open(input_file, 'rb'))
    else:
        input_file = 'train-v2.0.json' if args.version_2_with_negative else 'train-v1.1.json'
        input_file = os.path.join(args.data_dir, input_file)
        _, train_examples = read_squad_examples(
            input_file=input_file,
            is_training=True,
            version_2_with_negative=args.version_2_with_negative)
        train_features = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)

    num_train_optimization_steps = int(
        len(train_features) / args.batch_size) * args.num_train_epochs
    logger.info("***** Running training *****")
    logger.info("  Num split examples = %d", len(train_features))
    logger.info("  Batch size = %d", args.batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                   dtype=torch.long)
    all_start_positions = torch.tensor(
        [f.start_position for f in train_features], dtype=torch.long)
    all_end_positions = torch.tensor([f.end_position for f in train_features],
                                     dtype=torch.long)
    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                               all_start_positions, all_end_positions)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.batch_size)

    input_file = 'dev-v2.0.json' if args.version_2_with_negative else 'dev-v1.1.json'
    args.dev_file = os.path.join(args.data_dir, input_file)
    dev_dataset, eval_examples = read_squad_examples(
        input_file=args.dev_file,
        is_training=False,
        version_2_with_negative=args.version_2_with_negative)
    eval_features = convert_examples_to_features(
        examples=eval_examples,
        tokenizer=tokenizer,
        max_seq_length=args.max_seq_length,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length,
        is_training=False)
    logger.info("***** Running predictions *****")
    logger.info("  Num orig examples = %d", len(eval_examples))
    logger.info("  Num split examples = %d", len(eval_features))
    logger.info("  Batch size = %d", args.batch_size)
    all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                   dtype=torch.long)
    all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
    eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                              all_example_index)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.batch_size)

    teacher_model = BertForQuestionAnswering.from_pretrained(
        args.teacher_model)
    teacher_model.to(args.device)
    teacher_model.eval()
    if args.n_gpu > 1:
        teacher_model = torch.nn.DataParallel(teacher_model)
    result = do_eval(args, teacher_model, eval_dataloader, eval_features,
                     eval_examples, args.device, dev_dataset)
    em, f1 = result['exact_match'], result['f1']
    logger.info(f"Full precision teacher exact_match={em},f1={f1}")

    student_config = BertConfig.from_pretrained(args.student_model,
                                                quantize_act=True,
                                                weight_bits=args.weight_bits,
                                                input_bits=args.input_bits,
                                                clip_val=args.clip_val)
    student_model = QuantBertForQuestionAnswering.from_pretrained(
        args.student_model, config=student_config)
    student_model.to(args.device)

    if args.n_gpu > 1:
        student_model = torch.nn.DataParallel(student_model)
    # Prepare optimizer
    param_optimizer = list(student_model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    schedule = 'warmup_linear'
    optimizer = BertAdam(optimizer_grouped_parameters,
                         schedule=schedule,
                         lr=args.learning_rate,
                         warmup=0.1,
                         t_total=num_train_optimization_steps)

    loss_mse = MSELoss()
    # Train and evaluate
    global_step = 0
    best_dev_f1 = 0.0
    flag_loss = float('inf')
    previous_best = None
    tr_loss = 0.
    tr_att_loss = 0.
    tr_rep_loss = 0.
    tr_cls_loss = 0.
    for epoch_ in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
            student_model.train()
            batch = tuple(t.to(args.device) for t in batch)

            input_ids, input_mask, segment_ids, start_positions, end_positions = batch
            att_loss = 0.
            rep_loss = 0.
            cls_loss = 0.
            loss = 0

            student_logits, student_atts, student_reps = student_model(
                input_ids, segment_ids, input_mask)
            with torch.no_grad():
                teacher_logits, teacher_atts, teacher_reps = teacher_model(
                    input_ids, segment_ids, input_mask)

            if args.pred_distill:
                soft_start_ce_loss = soft_cross_entropy(
                    student_logits[0], teacher_logits[0])
                soft_end_ce_loss = soft_cross_entropy(student_logits[1],
                                                      teacher_logits[1])
                cls_loss = soft_start_ce_loss + soft_end_ce_loss
                loss += cls_loss
                tr_cls_loss += cls_loss.item()

            if args.intermediate_distill:
                for student_att, teacher_att in zip(student_atts,
                                                    teacher_atts):
                    student_att = torch.where(
                        student_att <= -1e2,
                        torch.zeros_like(student_att).to(args.device),
                        student_att)
                    teacher_att = torch.where(
                        teacher_att <= -1e2,
                        torch.zeros_like(teacher_att).to(args.device),
                        teacher_att)
                    tmp_loss = loss_mse(student_att, teacher_att)
                    att_loss += tmp_loss

                for student_rep, teacher_rep in zip(student_reps,
                                                    teacher_reps):
                    tmp_loss = loss_mse(student_rep, teacher_rep)
                    rep_loss += tmp_loss

                loss += rep_loss + att_loss
                tr_att_loss += att_loss.item()
                tr_rep_loss += rep_loss.item()

            if args.n_gpu > 1:
                loss = loss.mean()

            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            optimizer.zero_grad()
            global_step += 1

            save_model = False
            if global_step % args.eval_step == 0 or global_step == num_train_optimization_steps - 1:
                logger.info("***** Running evaluation *****")
                logger.info(f"  Epoch = {epoch_} iter {global_step} step")
                if previous_best is not None:
                    logger.info(f"Previous best = {previous_best}")

                student_model.eval()
                result = do_eval(args, student_model, eval_dataloader,
                                 eval_features, eval_examples, args.device,
                                 dev_dataset)
                em, f1 = result['exact_match'], result['f1']
                logger.info(f'{em}/{f1}')
                if f1 > best_dev_f1:
                    previous_best = f"exact_match={em},f1={f1}"
                    best_dev_f1 = f1
                    save_model = True

                summaryWriter.add_scalars('performance', {
                    'exact_match': em,
                    'f1': f1
                }, global_step)
                loss = tr_loss / global_step
                cls_loss = tr_cls_loss / global_step
                att_loss = tr_att_loss / global_step
                rep_loss = tr_rep_loss / global_step

                summaryWriter.add_scalar('total_loss', loss, global_step)
                summaryWriter.add_scalars(
                    'distill_loss', {
                        'att_loss': att_loss,
                        'rep_loss': rep_loss,
                        'cls_loss': cls_loss
                    }, global_step)

            #save quantiozed model
            if save_model:
                logger.info(previous_best)
                if args.save_fp_model:
                    logger.info(
                        "******************** Save full precision model ********************"
                    )
                    model_to_save = student_model.module if hasattr(
                        student_model, 'module') else student_model
                    output_model_file = os.path.join(args.output_dir,
                                                     WEIGHTS_NAME)
                    output_config_file = os.path.join(args.output_dir,
                                                      CONFIG_NAME)

                    torch.save(model_to_save.state_dict(), output_model_file)
                    model_to_save.config.to_json_file(output_config_file)
                    tokenizer.save_vocabulary(args.output_dir)
                if args.save_quantized_model:
                    logger.info(
                        "******************** Save quantized model ********************"
                    )
                    output_quant_dir = os.path.join(args.output_dir, 'quant')
                    if not os.path.exists(output_quant_dir):
                        os.makedirs(output_quant_dir)
                    model_to_save = student_model.module if hasattr(
                        student_model, 'module') else student_model
                    quant_model = copy.deepcopy(model_to_save)
                    for name, module in quant_model.named_modules():
                        if hasattr(module, 'weight_quantizer'):
                            module.weight.data = module.weight_quantizer.apply(
                                module.weight, module.weight_clip_val,
                                module.weight_bits, True)

                    output_model_file = os.path.join(output_quant_dir,
                                                     WEIGHTS_NAME)
                    output_config_file = os.path.join(output_quant_dir,
                                                      CONFIG_NAME)

                    torch.save(quant_model.state_dict(), output_model_file)
                    model_to_save.config.to_json_file(output_config_file)
                    tokenizer.save_vocabulary(output_quant_dir)
Ejemplo n.º 28
0
    def forward_head(self, outputs, head_name=None, attention_mask=None, labels=None):
        head_name = head_name or self.active_head
        if not head_name:
            logger.debug("No prediction head is used.")
            return outputs

        if head_name not in self.config.prediction_heads:
            raise ValueError("Unknown head_name '{}'".format(head_name))

        head = self.config.prediction_heads[head_name]

        sequence_output = outputs[0]

        if head["head_type"] == "classification":
            logits = self.heads[head_name](sequence_output[:, 0])

            outputs = (logits,) + outputs[2:]
            if labels is not None:
                if head["num_labels"] == 1:
                    #  We are doing regression
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), labels.view(-1))
                else:
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, head["num_labels"]), labels.view(-1))
                outputs = (loss,) + outputs

        elif head["head_type"] == "multilabel_classification":
            logits = self.heads[head_name](sequence_output[:, 0])

            outputs = (logits,) + outputs[2:]
            if labels is not None:
                loss_fct = BCEWithLogitsLoss()
                if labels.dtype != torch.float32:
                    labels = labels.float()
                loss = loss_fct(logits, labels)
                outputs = (loss,) + outputs

        elif head["head_type"] == "multiple_choice":
            logits = self.heads[head_name](sequence_output[:, 0])
            logits = logits.view(-1, head["num_choices"])

            outputs = (logits,) + outputs[2:]
            if labels is not None:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits, labels)
                outputs = (loss,) + outputs

        elif head["head_type"] == "tagging":
            logits = self.heads[head_name](sequence_output)

            outputs = (logits,) + outputs[2:]
            if labels is not None:
                loss_fct = CrossEntropyLoss()
                # Only keep active parts of the loss
                if attention_mask is not None:
                    active_loss = attention_mask.view(-1) == 1
                    active_logits = logits.view(-1, self.num_labels)
                    active_labels = torch.where(
                        active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                    )
                    loss = loss_fct(active_logits, active_labels)
                else:
                    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
                outputs = (loss,) + outputs

        else:
            raise ValueError("Unknown head_type '{}'".format(head["head_type"]))

        return outputs  # (loss), logits, (hidden_states), (attentions)
Ejemplo n.º 29
0
 def __init__(self):
     super(TripletLoss, self).__init__()
     self.mseLoss = MSELoss()
     self.alpha = 1
Ejemplo n.º 30
0
    def forward(
        self,
        input_ids=None,
        input_numericul=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)

        pooled_output = cat((pooled_output, input_numericul), dim=1)
        pooled_output = pooled_output.type(torch.float32)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels),
                                labels.view(-1))

        if not return_dict:
            output = (logits, ) + outputs[2:]
            return ((loss, ) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )