Ejemplo n.º 1
0
  def symbolic(g, self, mask, dim):
      import torch.onnx.symbolic_helper as sym_help
      from torch.onnx.symbolic_opset9 import masked_fill, softmax

      mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx['Long'])
      r_mask = g.op("Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx['Byte'])
      output = masked_fill(g, self, r_mask, g.op("Constant", value_t=torch.tensor(float('-inf'))))
      output = softmax(g, output, dim)
      return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.uint8)))
def index_put(g, self, indices_list_value, values, accumulate=False):
    if sym_help._is_packed_list(indices_list_value):
        indices_list = sym_help._unpack_list(indices_list_value)
    else:
        indices_list = [indices_list_value]
    if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
        args = [self] + indices_list + [values, accumulate]
        return g.op("ATen", *args, operator_s='index_put')

    from torch.onnx.symbolic_opset9 import add, expand
    accumulate = sym_help._parse_arg(accumulate, 'b')

    if len(indices_list) == 0:
        return values

    index = indices_list[0]

    if len(indices_list) > 1:
        for ind in indices_list[1:]:
            index = add(g, index, ind)
        broadcast_index_shape = g.op("Shape", index)
        indices_list = [
            sym_help._unsqueeze_helper(
                g, expand(g, ind, broadcast_index_shape, None), [-1])
            for ind in indices_list
        ]
        index = g.op("Concat", *indices_list, axis_i=-1)
    else:
        # Replace index_put node with masked_scatter or masked_fill
        # when inputs to the index_put node contains boolean inputs
        #
        # index_put -> masked_fill
        #   * input index contains single tensor of Bool type (e.g.: %24 <- %23).
        #   * input value contains single element (e.g.: %18).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #               aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
        #   %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
        #   %23 : Bool(8, strides=[1], device=cpu) = aten::view(%16, %22)
        #   %24 : Tensor?[] = prim::ListConstruct(%23)
        #   %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #                aten::index_put(%mask, %24, %18, %30)
        #   return (%25)
        #
        #
        # index_put -> masked_scatter
        #   * input index contains single tensor of Bool type (e.g.: %32 <- %31).
        #   * input value contains multiple elements (e.g.: %28).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
        #                = prim::Constant[value= 1  1  1  1  1  1  1  1 [ CPUFloatType{8} ]]()
        #   %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::ne(%mask, %some_const)
        #   %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
        #   %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %30 : int[] = prim::Constant[value=[-1]]()
        #   %31 : Bool(8, strides=[1], device=cpu) = aten::view(%23, %30)
        #   %32 : Tensor?[] = prim::ListConstruct(%31)
        #   %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #               = aten::index_put(%mask, %32, %28, %38)
        #   return (%33)
        bool_inp = index
        if bool_inp.type() is not None and bool_inp.type().scalarType(
        ) == 'Bool':
            rank = sym_help._get_tensor_rank(values)
            if rank is not None and rank == 0:
                from torch.onnx.symbolic_opset9 import masked_fill
                return masked_fill(g, self, bool_inp, values)
            return masked_scatter(g, self, bool_inp, values)
        broadcast_index_shape = g.op("Shape", index)
        index = sym_help._unsqueeze_helper(g, index, [-1])
    sub_data_shape = sym_help._slice_helper(g,
                                            g.op("Shape", self),
                                            axes=[0],
                                            starts=[len(indices_list)],
                                            ends=[maxsize])
    values_shape = g.op("Concat",
                        broadcast_index_shape,
                        sub_data_shape,
                        axis_i=0)
    # Check if values is a singular value and expand accordingly
    rank = sym_help._get_tensor_rank(values)
    if rank is not None and rank == 0:
        values = expand(g, values, values_shape, None)
    values = g.op("Reshape", values, values_shape)

    dtype = self.type().scalarType()
    if dtype is not None and dtype != values.type().scalarType():
        values = g.op("Cast",
                      values,
                      to_i=sym_help.cast_pytorch_to_onnx[dtype])
    dtype = sym_help.scalar_type_to_onnx.index(
        sym_help.cast_pytorch_to_onnx[dtype])
    dtype = sym_help.scalar_type_to_pytorch_type[dtype]

    if accumulate:
        zeros = g.op("ConstantOfShape",
                     g.op("Shape", self),
                     value_t=torch.tensor([0], dtype=dtype))
        result = g.op("ScatterND", zeros, index, values)
        result = add(g, self, result)
    else:
        result = g.op("ScatterND", self, index, values)

    return result
Ejemplo n.º 3
0
def index_put(g, self, indices_list_value, values, accumulate=False):
    indices_list = sym_help._unpack_list(indices_list_value)
    if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
        args = [self] + indices_list + [values, accumulate]
        return g.op("ATen", *args, operator_s='index_put')

    from torch.onnx.symbolic_opset9 import add, expand
    accumulate = sym_help._parse_arg(accumulate, 'b')

    index = indices_list[0]

    if len(indices_list) > 1:
        for ind in indices_list[1:]:
            index = add(g, index, ind)
        broadcast_index_shape = g.op("Shape", index)
        indices_list = [
            sym_help._unsqueeze_helper(
                g, expand(g, ind, broadcast_index_shape, None), [-1])
            for ind in indices_list
        ]
        index = g.op("Concat", *indices_list, axis_i=-1)
    else:
        # Replace index_put node with masked_scatter or masked_fill
        # when inputs to the index_put node contains boolean inputs
        #
        # index_put -> masked_fill
        #
        # before graph(%0 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=1, device=cpu),
        #       %some_const : Float(requires_grad=0, device=cpu)):
        #   %6 : None = prim::Constant()
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %8 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::ne(%mask, %some_const)
        #   %26 : Long(requires_grad=0, device=cpu) = prim::Constant[value={11}]()
        #   %27 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %11 : Device = prim::Constant[value="cpu"]()
        #   %12 : None = prim::Constant()
        #   %28 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %29 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %15 : None = prim::Constant()
        #   %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #               aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
        #   %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
        #   %30 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %22 : int[] = prim::Constant[value=[-1]]()
        #   %23 : Tensor = aten::view(%16, %22)
        #   %24 : Tensor?[] = prim::ListConstruct(%23)
        #   %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #                aten::index_put(%mask, %24, %18, %30)
        #   return (%25)
        #
        # after graph(%0 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu),
        #       %some_const : Float(requires_grad=0, device=cpu)):
        #   %3 : Tensor = onnx::Equal(%0, %some_const)
        #   %4 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = onnx::Not(%3)
        #   %12 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = onnx::Cast[to=9](%4)
        #   %19 : Tensor = onnx::Cast[to=9](%12)
        #   %20 : Tensor = onnx::Constant[value={1}]()
        #   %21 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = onnx::Where(%19, %20, %0)
        #   return (%21)
        #
        # index_put -> masked_scatter
        #
        # before graph(%0 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=1, device=cpu),
        #       %some_const : Float(requires_grad=0, device=cpu)):
        #   %6 : None = prim::Constant()
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
        #                = prim::Constant[value= 1  1  1  1  1  1  1  1 [ CPUFloatType{8} ]]()
        #   %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::ne(%mask, %some_const)
        #   %34 : Long(requires_grad=0, device=cpu) = prim::Constant[value={11}]()
        #   %35 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %18 : Device = prim::Constant[value="cpu"]()
        #   %19 : None = prim::Constant()
        #   %36 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %37 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %22 : None = prim::Constant()
        #   %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
        #   %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %30 : int[] = prim::Constant[value=[-1]]()
        #   %31 : Tensor = aten::view(%23, %30)
        #   %32 : Tensor?[] = prim::ListConstruct(%31)
        #   %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #               = aten::index_put(%mask, %32, %28, %38)
        #   return (%33)
        #
        # after graph(%0 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu),
        #       %some_const : Float(requires_grad=0, device=cpu)):
        #   %3 : Float(8, strides=[1], requires_grad=0, device=cpu)
        #               = onnx::Constant[value= 1  1  1  1  1  1  1  1 [ CPUFloatType{8} ]]()
        #   %4 : Tensor = onnx::Equal(%0, %some_const)
        #   %5 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = onnx::Not(%4)
        #   %13 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = onnx::Cast[to=9](%5)
        #   %19 : Tensor = onnx::Shape(%0)
        #   %20 : Tensor = onnx::Expand(%13, %19)
        #   %21 : Tensor = onnx::NonZero(%20)
        #   %22 : Tensor = onnx::Transpose[perm=[1, 0]](%21)
        #   %23 : Tensor = onnx::Constant[value={-1}]()
        #   %24 : Tensor = onnx::Reshape(%3, %23)
        #   %25 : Tensor = onnx::Shape(%22)
        #   %27 : Tensor = onnx::Constant[value={0}]()
        #   %28 : Tensor = onnx::Gather[axis=0](%25, %27)
        #   %29 : Tensor = onnx::Constant[value={0}]()
        #   %30 : Tensor = onnx::Unsqueeze[axes=[0]](%29)
        #   %31 : Tensor = onnx::Unsqueeze[axes=[0]](%28)
        #   %32 : Tensor = onnx::Constant[value={0}]()
        #   %33 : Tensor = onnx::Unsqueeze[axes=[0]](%32)
        #   %34 : Tensor = onnx::Slice(%24, %30, %31, %33)
        #   %35 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #               = onnx::ScatterND(%0, %22, %34)
        #   return (%35)

        bool_inp = list(index.node().inputs())[0]
        if bool_inp.type() is not None and bool_inp.type().scalarType(
        ) == 'Bool':
            rank = sym_help._get_tensor_rank(values)
            if rank is not None and rank == 0:
                from torch.onnx.symbolic_opset9 import masked_fill
                return masked_fill(g, self, bool_inp, values)
            return masked_scatter(g, self, bool_inp, values)
        broadcast_index_shape = g.op("Shape", index)
        index = sym_help._unsqueeze_helper(g, index, [-1])
    sub_data_shape = sym_help._slice_helper(g,
                                            g.op("Shape", self),
                                            axes=[0],
                                            starts=[len(indices_list)],
                                            ends=[maxsize])
    values_shape = g.op("Concat",
                        broadcast_index_shape,
                        sub_data_shape,
                        axis_i=0)
    values = g.op("Reshape", values, values_shape)

    if accumulate:
        dtype = self.type().scalarType()
        dtype = sym_help.scalar_type_to_onnx.index(
            sym_help.cast_pytorch_to_onnx[dtype])
        dtype = sym_help.scalar_type_to_pytorch_type[dtype]
        zeros = g.op("ConstantOfShape",
                     g.op("Shape", self),
                     value_t=torch.tensor([0], dtype=dtype))
        result = g.op("ScatterND", zeros, index, values)
        result = add(g, self, result)
    else:
        result = g.op("ScatterND", self, index, values)

    return result
Ejemplo n.º 4
0
def index_put(g, self, indices_list_value, values, accumulate=False):
    if symbolic_helper._is_packed_list(indices_list_value):
        indices_list = symbolic_helper._unpack_list(indices_list_value)
    else:
        indices_list = [indices_list_value]
    if symbolic_helper.is_caffe2_aten_fallback():
        args = [self] + indices_list + [values, accumulate]
        return g.at("index_put", *args)

    accumulate = symbolic_helper._parse_arg(accumulate, "b")

    if len(indices_list) == 0:
        return values

    if len(indices_list) > 1:
        for idx_ in range(len(indices_list)):
            if indices_list[idx_].type().scalarType() == "Bool":  # type: ignore[attr-defined]
                # TODO(justinchuby): Remove type ignore after #81112 is checked in.
                indices_list[idx_] = g.op("NonZero", indices_list[idx_])
        index = indices_list[0]

        for ind in indices_list[1:]:
            index = opset9.add(g, index, ind)
        broadcast_index_shape = g.op("Shape", index)
        indices_list = [
            symbolic_helper._unsqueeze_helper(
                g, opset9.expand(g, ind, broadcast_index_shape, None), [-1]
            )
            for ind in indices_list
        ]
        index = g.op("Concat", *indices_list, axis_i=-1)
    else:
        # Replace index_put node with masked_scatter or masked_fill
        # when inputs to the index_put node contains a single boolean input.
        #
        # index_put -> masked_fill
        #   * input index contains single tensor of Bool type (e.g.: %24 <- %23).
        #   * input value contains single element (e.g.: %18).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #               aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
        #   %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
        #   %23 : Bool(8, strides=[1], device=cpu) = aten::view(%16, %22)
        #   %24 : Tensor?[] = prim::ListConstruct(%23)
        #   %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #                aten::index_put(%mask, %24, %18, %30)
        #   return (%25)
        #
        #
        # index_put -> masked_scatter
        #   * input index contains single tensor of Bool type (e.g.: %32 <- %31).
        #   * input value contains multiple elements (e.g.: %28).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
        #                = prim::Constant[value= 1  1  1  1  1  1  1  1 [ CPUFloatType{8} ]]()
        #   %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::ne(%mask, %some_const)
        #   %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
        #   %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %30 : int[] = prim::Constant[value=[-1]]()
        #   %31 : Bool(8, strides=[1], device=cpu) = aten::view(%23, %30)
        #   %32 : Tensor?[] = prim::ListConstruct(%31)
        #   %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #               = aten::index_put(%mask, %32, %28, %38)
        #   return (%33)
        index = indices_list[0]
        bool_inp = index
        if bool_inp.type() is not None and bool_inp.type().scalarType() == "Bool":  # type: ignore[attr-defined]
            # TODO(justinchuby): Remove type ignore after #81112 is checked in.
            rank = symbolic_helper._get_tensor_rank(values)
            if rank is not None and rank == 0:
                return opset9.masked_fill(g, self, bool_inp, values)
            return masked_scatter(g, self, bool_inp, values)
        broadcast_index_shape = g.op("Shape", index)
        index = symbolic_helper._unsqueeze_helper(g, index, [-1])
    sub_data_shape = symbolic_helper._slice_helper(
        g, g.op("Shape", self), axes=[0], starts=[len(indices_list)], ends=[sys.maxsize]
    )
    values_shape = g.op("Concat", broadcast_index_shape, sub_data_shape, axis_i=0)
    # Check if values is a singular value and expand accordingly
    rank = symbolic_helper._get_tensor_rank(values)
    if rank is not None and rank == 0:
        values = opset9.expand(g, values, values_shape, None)
    values = symbolic_helper._reshape_helper(g, values, values_shape)

    dtype = self.type().scalarType()
    if dtype is not None and dtype != values.type().scalarType():
        values = g.op("Cast", values, to_i=symbolic_helper.cast_pytorch_to_onnx[dtype])
    dtype = symbolic_helper.scalar_type_to_onnx.index(
        symbolic_helper.cast_pytorch_to_onnx[dtype]
    )
    dtype = symbolic_helper.scalar_type_to_pytorch_type[dtype]

    if accumulate:
        zeros = g.op(
            "ConstantOfShape",
            g.op("Shape", self),
            value_t=torch.tensor([0], dtype=dtype),
        )
        result = g.op("ScatterND", zeros, index, values)
        result = add(g, self, result)
    else:
        result = g.op("ScatterND", self, index, values)

    return result