Ejemplo n.º 1
0
class TestForeach(TestCase):
    @property
    def is_cuda(self):
        return self.device_type == 'cuda'

    # note(mkozuki): It might be the case that the expected number of `cudaLaunchKernel`s
    # is greater than 1 once foreach functions internally separate their input `TensorList`s by
    # devices & dtypes into vectors of tensors.
    def _get_funcs(self, op, n_expected_cudaLaunchKernels):
        return (
            ForeachFuncWrapper(op.method_variant,
                               n_expected_cudaLaunchKernels),
            RegularFuncWrapper(op.ref),
            ForeachFuncWrapper(op.inplace_variant,
                               n_expected_cudaLaunchKernels),
            RegularFuncWrapper(op.ref_inplace),
        )

    def _binary_test(self,
                     dtype,
                     op,
                     ref,
                     inputs,
                     is_fastpath,
                     is_inplace,
                     *,
                     alpha=None):
        ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]
                      ] if is_inplace else inputs
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(ref_inputs)
        else:
            expected = ref(ref_inputs)
            self.assertEqual(actual, expected)
        if alpha is not None:
            kwargs = {'alpha': alpha}
            ref_inputs = inputs
            try:
                actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
            except RuntimeError as e:
                with self.assertRaisesRegex(type(e), re.escape(str(e))):
                    ref(ref_inputs, **kwargs)
            else:
                expected = ref(ref_inputs, **kwargs)
                if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
                    self.assertEqual(expected,
                                     actual,
                                     atol=1.e-3,
                                     rtol=self.dtype_precisions[dtype][0])
                else:
                    self.assertEqual(expected, actual)

    def _test_binary_op_tensorlists(self, device, dtype, opinfo, N,
                                    is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)
        if opinfo.supports_alpha_param:
            alpha = None
            if dtype in get_all_int_dtypes():
                alpha = 3
            elif dtype.is_complex:
                alpha = complex(3, 3)
            else:
                alpha = 3.14
            self._binary_test(dtype,
                              op,
                              ref,
                              inputs,
                              is_fastpath,
                              is_inplace=False,
                              alpha=alpha)
            self._binary_test(dtype,
                              inplace_op,
                              inplace_ref,
                              inputs,
                              is_fastpath,
                              is_inplace=True,
                              alpha=alpha)

        # Tests of implicit broadcasting
        # When sizes of tensors don't match, foreach functions are supposed to choose slow path
        # even if this methods's argument `is_fastpath` is True.
        # `cudaLaunchKernel` will be equal to `N`. For assert in `ForeachFuncWrapper` to pass,
        # we pass `is_fastpath and disable_fastpath` to `_binary_test`'s argument of is_fastpath.
        # as n_expected_cudaLaunchKernels is N if disable_fastpath.
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            [
                make_tensor((N - i, 1),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath and disable_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath and disable_fastpath,
                          is_inplace=True)

    # note(mkozuki): Why ROCm?
    # ROCm is supposed to compile slow path as in
    # https://github.com/pytorch/pytorch/blob/7e032f18cf1405804c4f787b05ea2de5e08a091e/aten/src/ATen/native/ForeachUtils.h#L148-L164,  # noqa: E501
    # Therefore `[torch.add(*args, alpha=alpha) for args in zip(tensors1, tensors2)]` and
    # `torch._foreach_add(tensors1, tensors2, alpha=alpha)`
    # are expected to return the same outputs, however, the outputs look unstable for torch.bfloat16 and torch.half.
    # log: https://ci.pytorch.org/jenkins/job/pytorch-builds/job/pytorch-linux-bionic-rocm4.2-py3.6-test1/2741/console
    @skipCUDAIfRocm
    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_tensorlists_fastpath(self, device, dtype, op):
        for N in N_values:
            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes(
            ) + [torch.bool]
            if op.ref == torch.add and dtype == torch.bool:
                disable_fastpath = True
            self._test_binary_op_tensorlists(device, dtype, op, N, True,
                                             disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_tensorlists_slowpath(self, device, dtype, op):
        for N in N_values:
            self._test_binary_op_tensorlists(device, dtype, op, N, False,
                                             False)

    def _test_binary_op_scalar(self, device, dtype, opinfo, N, scalar,
                               is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath), scalar
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)

    @skipCUDAIfRocm
    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_scalar_fastpath(self, device, dtype, op):
        for N, scalar in itertools.product(N_values, Scalars):
            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes(
            ) + [torch.bool]
            if isinstance(scalar, int):
                disable_fastpath |= dtype == torch.bool
            if isinstance(scalar, float):
                disable_fastpath |= dtype in get_all_int_dtypes() + [
                    torch.bool
                ]
            if isinstance(scalar, bool):
                disable_fastpath |= dtype == torch.bool
                if op.ref in (torch.add, torch.mul):
                    disable_fastpath = False
            if isinstance(scalar, complex):
                disable_fastpath |= dtype not in get_all_complex_dtypes()
            self._test_binary_op_scalar(device, dtype, op, N, scalar, True,
                                        disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_scalar_slowpath(self, device, dtype, op):
        for N, scalar in itertools.product(N_values, Scalars):
            self._test_binary_op_scalar(device, dtype, op, N, scalar, False,
                                        False)

    def _test_binary_op_scalarlist(self, device, dtype, opinfo, N, scalarlist,
                                   is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath), scalarlist
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)

    # note(mkozuki): Why two functions depending on with/without bool?
    # `foreach_sub` & `foreach_sub_` do `sub_check(tensors[i], scalars[i])` from i=1...N.
    # So, if scalarlist has one or more bool values, `foreach_sub` and `foreach_sub_`
    # raise bool subtraction error before doing any math.
    # While regular `sub` and `sub_` do some math until they encounter bool.
    # So, foreach sub's throw bool sub error first. However, regular sub's throw different
    # errors depending on the order of scalarlist. To keep actual unit test impl simple,
    # separating mixed scalarlist tests. By setting the first element of scalarlist to bool,
    # they are expected to throw bool sub error even in inplace test.
    @skipCUDAIfRocm
    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_scalarlist_fastpath(self, device, dtype, op):
        for N in N_values:
            for type_str, scalarlist in getScalarLists(N):
                bool_int_div = op.ref == torch.div and dtype in get_all_int_dtypes(
                ) + [torch.bool]
                disable_fastpath = bool_int_div
                if type_str == "int":
                    disable_fastpath |= dtype == torch.bool
                if type_str == "float":
                    disable_fastpath |= dtype in get_all_int_dtypes() + [
                        torch.bool
                    ]
                if type_str == "complex":
                    disable_fastpath |= dtype not in get_all_complex_dtypes()
                if type_str == "mixed":
                    disable_fastpath |= True and dtype not in get_all_complex_dtypes(
                    )
                self._test_binary_op_scalarlist(device, dtype, op, N,
                                                scalarlist, True,
                                                disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_scalarlist_slowpath(self, device, dtype, op):
        for N in N_values:
            for _, scalarlist in getScalarLists(N):
                self._test_binary_op_scalarlist(device, dtype, op, N,
                                                scalarlist, False, False)

    def _pointwise_test(self,
                        dtype,
                        op,
                        ref,
                        inputs,
                        is_fastpath,
                        is_inplace,
                        *,
                        values=None):
        ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1],
                      inputs[2]] if is_inplace else inputs
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(ref_inputs)
        else:
            expected = ref(ref_inputs)
            self.assertEqual(expected, actual)
        if values is not None:
            try:
                actual = op(inputs + [values], self.is_cuda, is_fastpath)
            except RuntimeError as e:
                with self.assertRaisesRegex(type(e), re.escape(str(e))):
                    ref(ref_inputs, values=values)
            else:
                expected = ref(ref_inputs, values=values)
                self.assertEqual(expected, actual)

    def _test_pointwise_op(self,
                           device,
                           dtype,
                           opinfo,
                           N,
                           is_fastpath,
                           disable_fastpath,
                           *,
                           values=None):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
        ]
        self._pointwise_test(dtype,
                             op,
                             ref,
                             inputs,
                             is_fastpath,
                             is_inplace=False,
                             values=values)
        self._pointwise_test(dtype,
                             inplace_op,
                             inplace_ref,
                             inputs,
                             is_fastpath,
                             is_inplace=True,
                             values=values)

        # Tests of implicit broadcasting
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath,
                                 same_size=True),
            [
                make_tensor((N - i, 1),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
            [
                make_tensor((1, N - i),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
        ]
        self._pointwise_test(dtype,
                             op,
                             ref,
                             inputs,
                             is_fastpath and disable_fastpath,
                             is_inplace=False,
                             values=values)
        self._pointwise_test(dtype,
                             inplace_op,
                             inplace_ref,
                             inputs,
                             is_fastpath and disable_fastpath,
                             is_inplace=True,
                             values=values)

    @skipMeta
    @ops(foreach_pointwise_op_db)
    def test_pointwise_op_fastpath(self, device, dtype, op):
        disable_fastpath = dtype in get_all_int_dtypes() + [torch.bool]
        # for N, scalar in itertools.product(N_values, Scalars):
        for N in N_values:
            self._test_pointwise_op(device, dtype, op, N, True,
                                    disable_fastpath)
            for scalar in Scalars:
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        True,
                                        disable_fastpath,
                                        values=scalar)
            for _, scalarlist in getScalarLists(N):
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        True,
                                        disable_fastpath,
                                        values=scalarlist)

    @ops(foreach_pointwise_op_db)
    def test_pointwise_op_slowpath(self, device, dtype, op):
        # for N, scalar in itertools.product(N_values, Scalars):
        for N in N_values:
            self._test_pointwise_op(device, dtype, op, N, False, False)
            for scalar in Scalars:
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        False,
                                        False,
                                        values=scalar)
            for _, scalarlist in getScalarLists(N):
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        False,
                                        False,
                                        values=scalarlist)

    # note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
    # To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
    # this test does not use `try-except` for fastpath.
    def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
        if is_fastpath:
            self.assertEqual(ref(inputs), op(inputs, self.is_cuda,
                                             is_fastpath))
            return
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(inputs)
        else:
            expected = ref(inputs)
            self.assertEqual(actual, expected)

    # note(mkozuki): why `try-except` for both fastpath?
    # - inputs for fastpath can be integer tensors.
    #    - this is becase opinfo dtypes are configured for outpulace implementation
    # - for integer inputs, trigonometric functions and exponential function returns float outputs,
    #   which causes "result type Float can't be case to the desired type" error.
    # Thus, `try-except` is used even if `is_fastpath` is `True`.
    def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs,
                            is_fastpath):
        copied_inputs = [[t.clone().detach() for t in tensors]
                         for tensors in inputs]
        try:
            inplace(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                inplace_ref(copied_inputs)
        else:
            inplace_ref(copied_inputs),
            self.assertEqual(copied_inputs, inputs)

    def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
        op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
        inputs = opinfo.sample_inputs(device,
                                      dtype,
                                      N,
                                      noncontiguous=not is_fastpath),
        # note(mkozuki): Complex inputs for `_foreach_abs` go through slowpath.
        if opinfo.name == "_foreach_abs" and dtype in get_all_complex_dtypes():
            is_fastpath = False
        self._regular_unary_test(dtype, op, ref, inputs, is_fastpath)
        self._inplace_unary_test(dtype, inplace_op, inplace_ref, inputs,
                                 is_fastpath)

    @skipMeta
    @ops(foreach_unary_op_db)
    def test_unary_fastpath(self, device, dtype, op):
        for N in N_values:
            self._test_unary(device, dtype, op, N, is_fastpath=True)

    @ops(foreach_unary_op_db, dtypes=get_all_dtypes())
    def test_unary_slowpath(self, device, dtype, op):
        for N in N_values:
            self._test_unary(device, dtype, op, N, is_fastpath=False)

    def _minmax_test(self, opinfo, inputs, is_fastpath,
                     n_expected_cudaLaunchKernels):
        op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
        self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))

    # note(mkozuki): in-place of foreach_minimum and foreach_maximum aren't implemented.
    @ops(foreach_minmax_op_db)
    def test_minmax_fastpath(self, device, dtype, op):
        for N in N_values:
            inputs = tuple(
                op.sample_inputs(device, dtype, N) for _ in range(2))
            self._minmax_test(op, inputs, True,
                              N if dtype == torch.bool else 1)

    @ops(foreach_minmax_op_db,
         dtypes=get_all_dtypes(include_half=True,
                               include_bfloat16=True,
                               include_complex=False))
    def test_minmax_slowpath(self, device, dtype, op):
        for N in N_values:
            inputs = tuple(
                op.sample_inputs(device, dtype, N, noncontiguous=True)
                for _ in range(2))
            self._minmax_test(op, inputs, False, 1)

    # note(mkozuki): ForeachFuncInfo's of both `_foreach_maximum` and `_foreach_minimum` include integer types.
    # so, manually limit dtypes to fp types for inf&nan tests.
    @ops(foreach_minmax_op_db,
         dtypes=get_all_fp_dtypes(include_bfloat16=True, include_half=True))
    def test_minmax_float_inf_nan(self, device, dtype, op):
        inputs = (
            [
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([-float('inf')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype)
            ],
            [
                torch.tensor([-float('inf')], device=device, dtype=dtype),
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype)
            ],
        )
        self._minmax_test(op, inputs, True, 1)

    def _reduce_test(self, opinfo, inputs, ord, is_fastpath,
                     n_expected_cudaLaunchKernels):
        op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
        self.assertEqual(ref(inputs, ord=ord),
                         op(inputs, self.is_cuda, is_fastpath, ord=ord))

    @ops(foreach_reduce_op_db)
    def test_reduce_fastpath(self, device, dtype, op):
        for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
            if ord in (1, 2) and dtype in torch.testing.get_all_fp_dtypes():
                n_expected_cudaLaunchKernels = 3
            else:
                n_expected_cudaLaunchKernels = N
            inputs = op.sample_inputs(device, dtype, N, noncontiguous=False),
            self._reduce_test(op, inputs, ord, True,
                              n_expected_cudaLaunchKernels)

    @ops(foreach_reduce_op_db)
    def test_reduce_slowpath(self, device, dtype, op):
        for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
            inputs = op.sample_inputs(device, dtype, N, noncontiguous=True),
            self._reduce_test(op, inputs, ord, False, 1)

    @dtypes(*get_all_dtypes())
    def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
        # TODO: enable empty list case
        for tensors in [[torch.randn([0])]]:
            res = torch._foreach_add(tensors, 1)
            self.assertEqual(res, tensors)

            torch._foreach_add_(tensors, 1)
            self.assertEqual(res, tensors)

    @ops(foreach_binary_op_db, dtypes=get_all_dtypes())
    def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype,
                                                       op):
        foreach_op, ref = op.method_variant, op.ref
        tensors = [
            torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)
        ]

        if ref == torch.sub and dtype == torch.bool:
            with self.assertRaisesRegex(RuntimeError,
                                        re.escape(_BOOL_SUB_ERR_MSG)):
                [ref(t, 1) for t in tensors]
            with self.assertRaisesRegex(RuntimeError,
                                        re.escape(_BOOL_SUB_ERR_MSG)):
                foreach_op(tensors, 1)
            return

        expected = [ref(t, 1) for t in tensors]
        res = foreach_op(tensors, 1)
        self.assertEqual(res, expected)

    # note(mkozuki): this test case fails with Meta at least in my local environment.
    # The message was
    # `AssertionError: NotImplementedError("Could not run 'aten::_foreach_add.Scalar' with arguments from the 'Meta' backend.`
    @skipMeta
    @ops(foreach_binary_op_db, allowed_dtypes=[torch.float])
    def test_binary_op_scalar_with_different_tensor_dtypes(
            self, device, dtype, op):
        foreach_op = op.method_variant
        tensors = [
            torch.tensor([1.1], dtype=torch.float, device=device),
            torch.tensor([1], dtype=torch.long, device=device)
        ]
        runtime_error = None
        try:
            foreach_op(tensors, 1)
        except RuntimeError as e:
            runtime_error = e
        self.assertIsNone(runtime_error)

    @ops(foreach_binary_op_db, dtypes=get_all_dtypes())
    def test_binary_op_list_error_cases(self, device, dtype, op):
        foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
        tensors1 = []
        tensors2 = []

        # Empty lists
        with self.assertRaisesRegex(
                RuntimeError,
                "There were no tensor arguments to this function"):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "There were no tensor arguments to this function"):
            foreach_op_(tensors1, tensors2)

        # One empty list
        tensors1.append(torch.tensor([1], device=device, dtype=dtype))
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor list must have same number of elements as scalar list."
        ):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor list must have same number of elements as scalar list."
        ):
            foreach_op_(tensors1, tensors2)

        # Lists have different amount of tensors
        tensors2.append(torch.tensor([1], device=device))
        tensors2.append(torch.tensor([1], device=device))
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor lists must have the same number of tensors, got 1 and 2"
        ):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor lists must have the same number of tensors, got 1 and 2"
        ):
            foreach_op_(tensors1, tensors2)

        # Corresponding tensors with different sizes that aren't compatible with broadcast
        # If sizes are different then foreach chooses slow path, thus error messages are expected
        # to be the same as torch regular function.
        tensors1 = [
            torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)
        ]
        tensors2 = [
            torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)
        ]
        try:
            foreach_op(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        try:
            foreach_op_(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]

        # different devices
        if self.device_type == "cuda" and torch.cuda.device_count() > 1:
            tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
            tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
            if dtype == torch.bool and foreach_op == torch._foreach_sub:
                with self.assertRaisesRegex(RuntimeError,
                                            re.escape(_BOOL_SUB_ERR_MSG)):
                    foreach_op([tensor1], [tensor2])
                with self.assertRaisesRegex(RuntimeError,
                                            re.escape(_BOOL_SUB_ERR_MSG)):
                    foreach_op_([tensor1], [tensor2])
                return
            with self.assertRaisesRegex(
                    RuntimeError,
                    "Expected all tensors to be on the same device"):
                foreach_op([tensor1], [tensor2])
            if dtype in get_all_int_dtypes() + [
                    torch.bool
            ] and foreach_op == torch._foreach_div:
                with self.assertRaisesRegex(RuntimeError, "result type"):
                    foreach_op_([tensor1], [tensor2])
            else:
                with self.assertRaisesRegex(
                        RuntimeError,
                        "Expected all tensors to be on the same device"):
                    foreach_op_([tensor1], [tensor2])

    @skipMeta
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
    @ops(foreach_binary_op_db, dtypes=get_all_dtypes())
    def test_binary_op_list_slow_path(self, device, dtype, op):
        # note(mkozuki): why `n_expected_cudaLaunchKernels=0`?
        # In this test, foreach functions don't go through fast path,
        # but as there is only one tensor in each list of tensors,
        # `cudaLaunchKernel` is 1 so ForeachFuncWrapper internal assert fails.
        foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(
            op, n_expected_cudaLaunchKernels=0)
        # 0-strides
        tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
        tensor2 = make_tensor((1, ), device=device,
                              dtype=dtype).expand_as(tensor1)
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # different strides
        tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
        tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
        inputs = ([tensor1], [tensor2.t()])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # non contiguous
        tensor1 = make_tensor((5, 2, 1, 3),
                              device=device,
                              dtype=dtype,
                              noncontiguous=True)
        tensor2 = make_tensor((5, 2, 1, 3),
                              device=device,
                              dtype=dtype,
                              noncontiguous=True)
        self.assertFalse(tensor1.is_contiguous())
        self.assertFalse(tensor2.is_contiguous())
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # sliced tensor
        tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
        tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device,
                              dtype=dtype)[:, :, :, ::7]
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

    # note: Below three tests (postfixed with `_tensors_on_different_devices`)
    # checks whether foreach works with lists of tensors on different devices
    # but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
    @onlyCUDA
    @ops(foreach_unary_op_db)
    def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
        method, ref, inplace_method, ref_inplace = self._get_funcs(op, 1)
        # tensors: ['cuda', 'cpu]
        tensors = op.sample_inputs(device, dtype, 2)
        tensors[1] = tensors[1].to('cpu')
        try:
            actual = method((tensors, ), False, False)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), str(e)):
                ref((tensors, ))
        else:
            expected = ref((tensors, ))
            self.assertEqual(expected, actual)

        try:
            inplace_method((tensors, ), False, False)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), str(e)):
                ref_inplace((tensors, ))
        else:
            self.assertEqual(expected, tensors)

    @onlyCUDA
    @ops(foreach_binary_op_db)
    def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
        # `tensors1`: ['cuda', 'cpu']
        # `tensors2`: ['cuda', 'cpu']
        _cuda_tensors = op.sample_inputs(device, dtype, 2, same_size=True)
        _cpu_tensors = op.sample_inputs('cpu', dtype, 2, same_size=True)
        tensors1, tensors2 = list(
            tensors for tensors in zip(_cuda_tensors, _cpu_tensors))

        foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
        native_op, native_op_ = op.ref, op.ref_inplace
        try:
            actual = foreach_op(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        else:
            expected = [
                native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)
            ]
            self.assertEqual(expected, actual)
        try:
            foreach_op_(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        else:
            self.assertEqual(actual, tensors1)

    @onlyCUDA
    @ops(foreach_pointwise_op_db,
         allowed_dtypes=get_all_fp_dtypes(include_half=False,
                                          include_bfloat16=False))
    def test_pointwise_op_tensors_on_different_devices(self, device, dtype,
                                                       op):
        # tensors1: ['cuda', 'cpu]
        # tensors2: ['cuda', 'cpu]
        # tensors3: ['cuda', 'cpu]
        _cuda_tensors = op.sample_inputs(device, dtype, 3, same_size=True)
        _cpu_tensors = op.sample_inputs('cpu', dtype, 3, same_size=True)
        tensors1, tensors2, tensors3 = list(
            tensors for tensors in zip(_cuda_tensors, _cpu_tensors))

        foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
        actual = foreach_op(tensors1, tensors2, tensors3)
        expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
        self.assertEqual(expected, actual)

        # note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
        foreach_op_(tensors1, tensors2, tensors3)
        self.assertEqual(expected, tensors1)
Ejemplo n.º 2
0
class TestSortAndSelect(TestCase):

    def assertIsOrdered(self, order, x, mxx, ixx, task):
        SIZE = x.size(1)
        if order == 'descending':
            def check_order(a, b):
                # `a != a` because we put NaNs
                # at the end of ascending sorted lists,
                # and the beginning of descending ones.
                return ((a != a) | (a >= b)).all().item()
        elif order == 'ascending':
            def check_order(a, b):
                # see above
                return ((b != b) | (a <= b)).all().item()
        else:
            error('unknown order "{}", must be "ascending" or "descending"'.format(order))

        are_ordered = True
        for k in range(1, SIZE):
            self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]),
                            'torch.sort ({}) values unordered for {}'.format(order, task))

        seen = set()
        indicesCorrect = True
        size0 = x.size(0)
        size = x.size(x.dim() - 1)
        x = x.tolist()
        mxx = mxx.tolist()
        ixx = ixx.tolist()
        for k in range(size0):
            seen.clear()
            for j in range(size):
                self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
                                 msg='torch.sort ({}) indices wrong for {}'.format(order, task))
                seen.add(ixx[k][j])
            self.assertEqual(len(seen), size)

    def test_sort(self, device):
        # on CUDA 2048 vs >2048 have different code path for the dim being sorted
        for SIZE in (4, 2049):
            x = torch.rand(4, SIZE, device=device)
            res1val, res1ind = torch.sort(x)

            # Test inplace
            y = x.clone()
            y_inds = torch.tensor((), dtype=torch.int64, device=device)
            torch.sort(y, out=(y, y_inds))
            x_vals, x_inds = torch.sort(x)
            self.assertEqual(x_vals, y)
            self.assertEqual(x_inds, y_inds)

            # Test use of result tensor
            res2val = torch.tensor((), device=device)
            res2ind = torch.tensor((), device=device, dtype=torch.long)
            torch.sort(x, out=(res2val, res2ind))
            self.assertEqual(res1val, res2val, atol=0, rtol=0)
            self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
            self.assertEqual(torch.argsort(x), res1ind)
            self.assertEqual(x.argsort(), res1ind)

            # Test sorting of random numbers
            self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')

            # Test simple sort
            self.assertEqual(
                torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
                torch.tensor((10, 20, 30, 40, 50), device=device),
                atol=0, rtol=0
            )

            # Test that we still have proper sorting with duplicate keys
            x = torch.floor(torch.rand(4, SIZE, device=device) * 10)
            torch.sort(x, out=(res2val, res2ind))
            self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')

            # DESCENDING SORT
            x = torch.rand(4, SIZE, device=device)
            res1val, res1ind = torch.sort(x, x.dim() - 1, True)

            # Test use of result tensor
            res2val = torch.tensor((), device=device)
            res2ind = torch.tensor((), device=device, dtype=torch.long)
            torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
            self.assertEqual(res1val, res2val, atol=0, rtol=0)
            self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
            self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
            self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)

            # Test sorting of random numbers
            self.assertIsOrdered('descending', x, res2val, res2ind, 'random')

            # Test simple sort task
            self.assertEqual(
                torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
                torch.tensor((50, 40, 30, 20, 10), device=device),
                atol=0, rtol=0
            )

            # Test that we still have proper sorting with duplicate keys
            self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')

            # Test sorting with NaNs
            x = torch.rand(4, SIZE, device=device)
            x[1][2] = float('NaN')
            x[3][0] = float('NaN')
            torch.sort(x, out=(res2val, res2ind))
            self.assertIsOrdered('ascending', x, res2val, res2ind,
                                 'random with NaNs')
            torch.sort(x, out=(res2val, res2ind), descending=True)
            self.assertIsOrdered('descending', x, res2val, res2ind,
                                 'random with NaNs')

    # FIXME: remove torch.bool from unsupported types once support is added for cub sort
    @dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
    def test_stable_sort(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return
        sizes = (100, 1000, 10000)
        for ncopies in sizes:
            x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
            _, idx = x.sort(stable=True)
            self.assertEqual(
                idx[:ncopies],
                torch.arange(start=0, end=2 * ncopies, step=2, device=device)
            )
            self.assertEqual(
                idx[ncopies:],
                torch.arange(start=1, end=2 * ncopies, step=2, device=device)
            )

    @onlyCUDA
    @dtypes(torch.uint8)
    @largeTensorTest('200GB')  # Unfortunately 80GB A100 is not large enough
    def test_sort_large(self, device, dtype):
        t0 = torch.randperm(8192, device=device).to(dtype)
        t = t0.view(1, 8192).expand(2 ** 18 + 1, -1).contiguous()
        v, i = t.sort()
        del t
        iv, im = i.var_mean(dim=0)
        del i
        vv, vm = v.var_mean(dim=0)
        del v
        self.assertEqual(vv, torch.zeros_like(vv))
        self.assertEqual(iv, torch.zeros_like(iv))
        self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device))
        self.assertEqual(im, t0.sort().indices)

    def _test_sort_discontiguous(self, device, dtype):
        # on CUDA 2048 vs >2048 have different code path for the dim being sorted
        sizes = (5, 7, 2049)
        for shape in permutations(sizes):
            for perm in permutations((0, 1, 2)):
                for dim in range(3):
                    t = torch.randn(shape, device=device, dtype=dtype).permute(perm)
                    r1 = t.sort(dim=dim)
                    r2 = t.contiguous().sort(dim=dim)
                    self.assertEqual(r1, r2)
                    n = t.size(dim)

                    # assert ordered
                    self.assertTrue((r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1)).all())

                    # assert that different segments does not mix, which can easily happen
                    # if the stride is not handled correctly
                    self.assertTrue((t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)).any(dim=dim).any(dim=-1).all())

                    # assert stride is preserved
                    if self.device_type == 'cuda':
                        # FIXME: this behavior should be true for all cases, not
                        # just the one specified in if condition
                        self.assertEqual(r1.values.stride(), t.stride())
                        self.assertEqual(r1.indices.stride(), t.stride())

    @onlyCUDA
    @dtypes(torch.float32)
    def test_sort_discontiguous(self, device, dtype):
        self._test_sort_discontiguous(device, dtype)

    @slowTest  # this test is slow on CPU, but not on CUDA
    @onlyCPU
    @dtypes(torch.float32)
    def test_sort_discontiguous_slow(self, device, dtype):
        self._test_sort_discontiguous(device, dtype)

    @dtypes(torch.float32)
    def test_sort_1d_output_discontiguous(self, device, dtype):
        tensor = torch.randn(12, device=device, dtype=dtype)[:6]
        values = torch.empty_like(tensor)[::2]
        indices = torch.empty(18, device=device, dtype=torch.long)[::3]
        torch.sort(tensor, out=(values, indices))
        values_cont, indices_cont = tensor.sort()
        self.assertEqual(indices, indices_cont)
        self.assertEqual(values, values_cont)

    @dtypes(torch.float32)
    def test_topk_1d_output_discontiguous(self, device, dtype):
        tensor = torch.randn(12, device=device, dtype=dtype)
        values = torch.empty_like(tensor)[::2]
        indices = torch.empty(18, device=device, dtype=torch.long)[::3]
        for sorted in (True, False):
            # outputs of `sorted=False` test are not guaranteed to be the same,
            # but with current implementation they are
            torch.topk(tensor, 6, sorted=sorted, out=(values, indices))
            values_cont, indices_cont = tensor.topk(6, sorted=sorted)
            self.assertEqual(indices, indices_cont)
            self.assertEqual(values, values_cont)

    # FIXME: remove torch.bool from unsupported types once support is added for cub sort
    @dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
    def test_stable_sort_against_numpy(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return
        if dtype in floating_types_and(torch.float16, torch.bfloat16):
            inf = float('inf')
            neg_inf = -float('inf')
            nan = float('nan')
        else:
            if dtype != torch.bool:
                # no torch.iinfo support for torch.bool
                inf = torch.iinfo(dtype).max
                neg_inf = torch.iinfo(dtype).min
            else:
                inf = True
                neg_inf = ~inf
            # no nan for integral types, we use inf instead for simplicity
            nan = inf

        def generate_samples():
            from itertools import chain, combinations

            for sizes in [(1025,), (10000,)]:
                size = sizes[0]
                # binary strings
                yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)

            if self.device_type == 'cuda':
                return

            yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0)

            def repeated_index_fill(t, dim, idxs, vals):
                res = t
                for idx, val in zip(idxs, vals):
                    res = res.index_fill(dim, idx, val)
                return res

            for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
                size = min(*sizes)
                x = (torch.randn(*sizes, device=device) * size).to(dtype)
                yield (x, 0)

                # Generate tensors which are being filled at random locations
                # with values from the non-empty subsets of the set (inf, neg_inf, nan)
                # for each dimension.
                n_fill_vals = 3  # cardinality of (inf, neg_inf, nan)
                for dim in range(len(sizes)):
                    idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
                    vals = (inf, neg_inf, nan)
                    subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
                                                  for r in range(1, n_fill_vals + 1))
                    for subset in subsets:
                        idxs_subset, vals_subset = zip(*subset)
                        yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)

        for sample, dim in generate_samples():
            _, idx_torch = sample.sort(dim=dim, stable=True)
            if dtype is torch.bfloat16:
                sample_numpy = sample.float().cpu().numpy()
            else:
                sample_numpy = sample.cpu().numpy()
            idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
            self.assertEqual(idx_torch, idx_numpy)

    @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
    def test_msort(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        def test(shape):
            tensor = make_tensor(shape, device, dtype, low=-9, high=9)
            if tensor.size() != torch.Size([]):
                if dtype is torch.bfloat16:
                    expected = torch.from_numpy(np.msort(tensor.float().cpu().numpy())).bfloat16()
                else:
                    expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
            else:
                expected = tensor  # numpy.msort() does not support empty shapes tensor

            result = torch.msort(tensor)
            self.assertEqual(result, expected)

            out = torch.empty_like(result)
            torch.msort(tensor, out=out)
            self.assertEqual(out, expected)

        shapes = (
            [],
            [0, ],
            [20, ],
            [1, 20],
            [30, 30],
            [10, 20, 30]
        )
        for shape in shapes:
            test(shape)

    def test_topk(self, device):
        def topKViaSort(t, k, dim, dir):
            sorted, indices = t.sort(dim, dir)
            return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)

        def compareTensors(t, res1, ind1, res2, ind2, dim):
            # Values should be exactly equivalent
            self.assertEqual(res1, res2, atol=0, rtol=0)

            # Indices might differ based on the implementation, since there is
            # no guarantee of the relative order of selection
            if not ind1.eq(ind2).all():
                # To verify that the indices represent equivalent elements,
                # gather from the input using the topk indices and compare against
                # the sort indices
                vals = t.gather(dim, ind2)
                self.assertEqual(res1, vals, atol=0, rtol=0)

        def compare(t, k, dim, dir):
            topKVal, topKInd = t.topk(k, dim, dir, True)
            sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
            compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)

        t = torch.rand(random.randint(1, SIZE),
                       random.randint(1, SIZE),
                       random.randint(1, SIZE), device=device)

        for _kTries in range(3):
            for _dimTries in range(3):
                for transpose in (True, False):
                    for dir in (True, False):
                        testTensor = t
                        if transpose:
                            dim1 = random.randrange(t.ndimension())
                            dim2 = dim1
                            while dim1 == dim2:
                                dim2 = random.randrange(t.ndimension())

                            testTensor = t.transpose(dim1, dim2)

                        dim = random.randrange(testTensor.ndimension())
                        k = random.randint(1, testTensor.size(dim))
                        compare(testTensor, k, dim, dir)

        # This tests the code path where on CUDA, topk is implemented with sort.
        t = torch.randn((2, 100000), device=device)
        compare(t, 2000, 1, True)
        compare(t, 2000, 1, False)

    def test_topk_arguments(self, device):
        q = torch.randn(10, 2, 10, device=device)
        # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
        self.assertRaises(TypeError, lambda: q.topk(4, True))

    @skipCUDAIfRocm
    def test_unique_dim(self, device):
        self.assertFalse(hasattr(torch, 'unique_dim'))

        def run_test(device, dtype):
            x = torch.tensor([[[1., 1.],
                               [0., 1.],
                               [2., 1.],
                               [0., 1.]],
                              [[1., 1.],
                               [0., 1.],
                               [2., 1.],
                               [0., 1.]]],
                             dtype=dtype,
                             device=device)
            x_empty = torch.empty(5, 0, dtype=dtype, device=device)
            x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
            x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                x_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
            expected_unique_dim0 = torch.tensor([[[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_inverse_dim0 = torch.tensor([0, 0])
            expected_counts_dim0 = torch.tensor([2])
            expected_unique_dim1 = torch.tensor([[[0., 1.],
                                                  [1., 1.],
                                                  [2., 1.]],
                                                 [[0., 1.],
                                                  [1., 1.],
                                                  [2., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
                                                      [[False, True], [True, True]]],
                                                     dtype=torch.bool,
                                                     device=device)
            expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
            expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
            expected_counts_dim1 = torch.tensor([2, 1, 1])
            expected_counts_dim1_bool = torch.tensor([2, 2])
            expected_unique_dim2 = torch.tensor([[[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]],
                                                 [[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_inverse_dim2 = torch.tensor([0, 1])
            expected_counts_dim2 = torch.tensor([1, 1])
            expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
            expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
            expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                expected_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
                expected_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
                expected_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
            # dim0
            x_unique = torch.unique(x, dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_inverse_dim0, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_counts_dim0, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_inverse_dim0, x_inverse)
            self.assertEqual(expected_counts_dim0, x_counts)

            # dim1
            x_unique = torch.unique(x, dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_inverse_dim1_bool, x_inverse)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_inverse_dim1, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_counts_dim1_bool, x_counts)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_counts_dim1, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_inverse_dim1_bool, x_inverse)
                self.assertEqual(expected_counts_dim1_bool, x_counts)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_inverse_dim1, x_inverse)
                self.assertEqual(expected_counts_dim1, x_counts)

            # dim2
            x_unique = torch.unique(x, dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_inverse_dim2, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_counts_dim2, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_inverse_dim2, x_inverse)
            self.assertEqual(expected_counts_dim2, x_counts)

            # test empty tensor
            x_unique, x_inverse, x_counts = torch.unique(
                x_empty,
                return_inverse=True,
                return_counts=True,
                dim=1)
            self.assertEqual(expected_unique_empty, x_unique)
            self.assertEqual(expected_inverse_empty, x_inverse)
            self.assertEqual(expected_counts_empty, x_counts)

            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                x_unique, x_inverse, x_counts = torch.unique(
                    x_nan,
                    return_inverse=True,
                    return_counts=True,
                    dim=0)
                self.assertEqual(expected_unique_nan, x_unique)
                self.assertEqual(expected_inverse_nan, x_inverse)
                self.assertEqual(expected_counts_nan, x_counts)

            # test not a well formed tensor
            # Checking for runtime error, as this is the expected behaviour
            with self.assertRaises(RuntimeError):
                torch.unique(
                    x_ill_formed_empty,
                    return_inverse=True,
                    return_counts=True,
                    dim=1)

            # test along dim2
            with self.assertRaises(RuntimeError):
                torch.unique(
                    x_ill_formed_empty_another,
                    return_inverse=True,
                    return_counts=True,
                    dim=2)

            # test consecutive version
            y = torch.tensor(
                [[0, 1],
                 [0, 1],
                 [0, 1],
                 [1, 2],
                 [1, 2],
                 [3, 4],
                 [0, 1],
                 [0, 1],
                 [3, 4],
                 [1, 2]],
                dtype=dtype,
                device=device
            )
            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                y_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
            expected_y_unique = torch.tensor(
                [[0, 1],
                 [1, 2],
                 [3, 4],
                 [0, 1],
                 [3, 4],
                 [1, 2]],
                dtype=dtype,
                device=device
            )
            expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
            expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
            expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
            expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                expected_y_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
                expected_y_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
                expected_y_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)

            y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
            if x.dtype == torch.bool:
                self.assertEqual(expected_y_inverse_bool, y_inverse)
                self.assertEqual(expected_y_counts_bool, y_counts)
            else:
                self.assertEqual(expected_y_inverse, y_inverse)
                self.assertEqual(expected_y_counts, y_counts)

            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                y_unique, y_inverse, y_counts = torch.unique_consecutive(
                    y_nan,
                    return_inverse=True,
                    return_counts=True,
                    dim=0)
                self.assertEqual(expected_y_unique_nan, y_unique)
                self.assertEqual(expected_y_inverse_nan, y_inverse)
                self.assertEqual(expected_y_counts_nan, y_counts)

        run_test(device, torch.float)
        run_test(device, torch.double)
        run_test(device, torch.long)
        run_test(device, torch.uint8)
        run_test(device, torch.bool)

    @onlyCUDA
    def test_topk_noncontiguous_gpu(self, device):
        t = torch.randn(20, device=device)[::2]
        top1, idx1 = t.topk(5)
        top2, idx2 = t.contiguous().topk(5)
        self.assertEqual(top1, top2)
        self.assertEqual(idx1, idx2)

    def _test_topk_dtype(self, device, dtype, integral, size):
        if integral:
            a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max,
                              size=(size,), dtype=dtype, device=device)
        else:
            a = torch.randn(size=(size,), dtype=dtype, device=device)

        sort_topk = a.sort()[0][-(size // 2):].flip(0)
        topk = a.topk(size // 2)
        self.assertEqual(sort_topk, topk[0])      # check values
        self.assertEqual(sort_topk, a[topk[1]])   # check indices

    @dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
    def test_topk_integral(self, device, dtype):
        small = 10
        large = 4096
        for curr_size in (small, large):
            self._test_topk_dtype(device, dtype, True, curr_size)

    @onlyCUDA
    @dtypes(torch.bfloat16)
    @skipCUDAIfRocm
    def test_topk_bfloat16(self, device, dtype):

        small = 10
        large = 8192
        for curr_size in (small, large):
            self._test_topk_dtype(device, dtype, False, curr_size)

    @dtypesIfCUDA(*get_all_fp_dtypes())
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_topk_nonfinite(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
        val, idx = x.topk(4)
        expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
        self.assertEqual(val, expect)
        self.assertEqual(idx, [0, 1, 2, 3])

        val, idx = x.topk(4, largest=False)
        expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
        self.assertEqual(val, expect)
        self.assertEqual(idx, [5, 4, 3, 2])

    def test_topk_4d(self, device):
        x = torch.ones(2, 3072, 2, 2, device=device)
        x[:, 1, :, :] *= 2.
        x[:, 10, :, :] *= 1.5
        val, ind = torch.topk(x, k=2, dim=1)
        expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
        expected_ind[:, 1, :, :] = 10
        expected_val = torch.ones(2, 2, 2, 2, device=device)
        expected_val[:, 0, :, :] *= 2.
        expected_val[:, 1, :, :] *= 1.5
        self.assertEqual(val, expected_val, atol=0, rtol=0)
        self.assertEqual(ind, expected_ind, atol=0, rtol=0)

    @onlyNativeDeviceTypes
    @dtypesIfCUDA(*(get_all_dtypes(include_complex=False,
                                   include_bool=False,
                                   include_half=False,
                                   include_bfloat16=True)))
    @dtypes(*(get_all_dtypes(include_complex=False, include_bool=False, include_half=False, include_bfloat16=False)))
    def test_topk_zero(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        # https://github.com/pytorch/pytorch/issues/49205
        t = torch.rand(2, 2, device=device).to(dtype=dtype)
        val, idx = torch.topk(t, k=0, largest=False)
        self.assertEqual(val.size(), torch.Size([2, 0]))
        self.assertEqual(idx.size(), torch.Size([2, 0]))

    def _test_unique_scalar_empty(self, dtype, device, f):
        # test scalar
        x = torch.tensor(0, dtype=dtype, device=device)
        unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
        expected_unique = torch.tensor([0], dtype=dtype, device=device)
        expected_inverse = torch.tensor(0, device=device)
        expected_counts = torch.tensor([1], device=device)
        self.assertEqual(unique, expected_unique)
        self.assertEqual(inverse, expected_inverse)
        self.assertEqual(counts, expected_counts)

        # test zero sized tensor
        x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
        unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
        expected_unique = torch.tensor([], dtype=dtype, device=device)
        expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
        expected_counts = torch.tensor([], dtype=torch.long, device=device)
        self.assertEqual(unique, expected_unique)
        self.assertEqual(inverse, expected_inverse)
        self.assertEqual(counts, expected_counts)

    def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
        def ensure_tuple(x):
            if isinstance(x, torch.Tensor):
                return (x,)
            return x

        for return_inverse in [True, False]:
            for return_counts in [True, False]:
                # test with expected
                ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
                self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
                self.assertEqual(expected_unique, ret[0])
                if return_inverse:
                    self.assertEqual(expected_inverse, ret[1])
                if return_counts:
                    count_index = 1 + int(return_inverse)
                    self.assertEqual(expected_counts, ret[count_index])

                # tests per-element unique on a higher rank tensor.
                y = x.view(additional_shape)
                y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
                self.assertEqual(expected_unique, y_unique)
                self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
                self.assertEqual(expected_counts, y_counts)

    @dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
    @dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
    def test_unique(self, device, dtype):
        if dtype is torch.half and self.device_type == 'cpu':
            return  # CPU does not have half support

        def ensure_tuple(x):
            if isinstance(x, torch.Tensor):
                return (x,)
            return x

        if dtype is torch.bool:
            x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
            expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
            expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
            expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
        else:
            x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
            expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
            expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
            expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)

        # test sorted unique
        fs = (
            lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
            lambda x, **kwargs: x.unique(sorted=True, **kwargs),
        )
        x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x)
        xs = (x, x_sliced)
        for f, x in product(fs, xs):
            self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
            self._test_unique_scalar_empty(dtype, device, f)

        # test unsorted unique
        fs = (
            lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
            lambda x, **kwargs: x.unique(sorted=False, **kwargs)
        )
        for f, x in product(fs, xs):
            self._test_unique_scalar_empty(dtype, device, f)
            for return_inverse, return_counts in product((True, False), repeat=2):
                ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
                self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
                x_list = x.tolist()
                x_unique_list = ret[0].tolist()
                self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
                if return_inverse:
                    x_inverse_list = ret[1].tolist()
                    for i, j in enumerate(x_inverse_list):
                        self.assertEqual(x_list[i], x_unique_list[j])
                if return_counts:
                    count_index = 1 + int(return_inverse)
                    x_counts_list = ret[count_index].tolist()
                    for i, j in zip(x_unique_list, x_counts_list):
                        count = 0
                        for k in x_list:
                            if k == i:
                                count += 1
                        self.assertEqual(j, count)

    @dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
    @dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
    def test_unique_consecutive(self, device, dtype):
        if dtype is torch.half and self.device_type == 'cpu':
            return  # CPU does not have half support

        if dtype is torch.bool:
            x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
            expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
            expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
            expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
        else:
            x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
            expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
            expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
            expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)

        for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
            self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
            self._test_unique_scalar_empty(dtype, device, f)

    @dtypes(torch.double)
    def test_kthvalue(self, device, dtype):
        SIZE = 50
        x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
        x0 = x.clone()

        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
        res2val, res2ind = torch.sort(x)

        self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
        # test use of result tensors
        k = random.randint(1, SIZE)
        res1val = torch.tensor([], dtype=dtype, device=device)
        res1ind = torch.tensor([], dtype=torch.long, device=device)
        torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
        res2val, res2ind = torch.sort(x)
        self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)

        # test non-default dim
        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
        res2val, res2ind = torch.sort(x, 0)
        self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)

        # non-contiguous
        y = x.narrow(1, 0, 1)
        y0 = y.contiguous()
        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(y, k)
        res2val, res2ind = torch.kthvalue(y0, k)
        self.assertEqual(res1val, res2val, atol=0, rtol=0)
        self.assertEqual(res1ind, res2ind, atol=0, rtol=0)

        # non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
        non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
        expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
        non_contig_cpu_t = non_contig_t.cpu()
        expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)

        out_val, out_ind = non_contig_t.kthvalue(2)
        self.assertEqual(expected_val, out_val, atol=0, rtol=0)
        self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
        self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
        self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)

        # check that the input wasn't modified
        self.assertEqual(x, x0, atol=0, rtol=0)

        # simple test case (with repetitions)
        y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
        self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
        self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)

        # simple test case (with NaN)
        SIZE = 50
        x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
        x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
        ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
        res2val, res2ind = torch.sort(x)
        for k in ks:
            res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
            self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
            self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)

    @dtypes(torch.float)
    @onlyNativeDeviceTypes   # Fails on XLA
    def test_kthvalue_scalar(self, device, dtype):
        # Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
        # Tests that passing a scalar tensor or 1D tensor with 1 element work either way
        res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
        ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
        self.assertEqual(res[0], ref[0].squeeze())
        self.assertEqual(res[1], ref[1].squeeze())

    @dtypes(*all_types())
    @dtypesIfCUDA(*all_types_and(torch.half))
    def test_isin(self, device, dtype):
        def assert_isin_equal(a, b):
            # Compare to the numpy reference implementation.
            x = torch.isin(a, b)
            a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a)
            b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b)
            y = np.isin(a, b)
            self.assertEqual(x, y)

        # multi-dim tensor, multi-dim tensor
        a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4])
        b = torch.tensor([[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype)
        assert_isin_equal(a, b)

        # zero-dim tensor
        zero_d = torch.tensor(3, device=device, dtype=dtype)
        assert_isin_equal(zero_d, b)
        assert_isin_equal(a, zero_d)
        assert_isin_equal(zero_d, zero_d)

        # empty tensor
        empty = torch.tensor([], device=device, dtype=dtype)
        assert_isin_equal(empty, b)
        assert_isin_equal(a, empty)
        assert_isin_equal(empty, empty)

        # scalar
        assert_isin_equal(a, 6)
        assert_isin_equal(5, b)

        def define_expected(lst, invert=False):
            expected = torch.tensor(lst, device=device)
            if invert:
                expected = expected.logical_not()
            return expected

        # Adapted from numpy's in1d tests
        for mult in [1, 10]:
            for invert in [False, True]:
                a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a[0] = 8
                ec = define_expected([False, False, True, True], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a[0], a[3] = 4, 8
                ec = define_expected([True, False, True, False], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype)
                b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype)
                ec = define_expected([False, True, False, True, True, True, True, True, True,
                                      False, True, False, False, False], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                b = torch.tensor([2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype)
                ec = define_expected([True, True, True, True, True, True, True, True, True, True,
                                      True, False, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 5], device=device, dtype=dtype)
                b = torch.tensor([2, 2] * mult, device=device, dtype=dtype)
                ec = define_expected([False, False], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                # multi-dimensional input case using sort-based algo
                for assume_unique in [False, True]:
                    a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
                    b = torch.arange(3, 30, device=device, dtype=dtype)
                    ec = define_expected([[False, False, False], [True, True, True]], invert=invert)
                    c = torch.isin(a, b, invert=invert, assume_unique=assume_unique)
                    self.assertEqual(c, ec)

    def test_isin_different_dtypes(self, device):
        supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
        for mult in [1, 10]:
            for assume_unique in [False, True]:
                for dtype1, dtype2 in product(supported_types, supported_types):
                    a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
                    b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
                    ec = torch.tensor([False, False, True], device=device)
                    c = torch.isin(a, b, assume_unique=assume_unique)
                    self.assertEqual(c, ec)

    @onlyCUDA
    @dtypes(*all_types())
    def test_isin_different_devices(self, device, dtype):
        a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
        b = torch.arange(3, 30, device='cpu', dtype=dtype)
        with self.assertRaises(RuntimeError):
            torch.isin(a, b)

        c = torch.arange(6, device='cpu', dtype=dtype).reshape([2, 3])
        d = torch.arange(3, 30, device=device, dtype=dtype)
        with self.assertRaises(RuntimeError):
            torch.isin(c, d)
Ejemplo n.º 3
0
class TestScatterGather(TestCase):
    # Fills an index tensor with valid indices
    def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o, unique_indices=True):
        for i in range(1 if dim == 0 else m):
            for j in range(1 if dim == 1 else n):
                for k in range(1 if dim == 2 else o):
                    ii = [i, j, k]
                    ii[dim] = slice(0, idx.size(dim) + 1)
                    if unique_indices:
                        idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
                    else:
                        idx[tuple(ii)] = torch.randint(dim_size, (elems_per_row,))

    @dtypes(torch.float32, torch.complex64)
    def test_gather(self, device, dtype):
        m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
        elems_per_row = random.randint(1, 10)
        dim = random.randrange(3)

        src = make_tensor((m, n, o), device=device, dtype=dtype)
        idx_size = [m, n, o]
        idx_size[dim] = elems_per_row
        idx = make_tensor(idx_size, device=device, dtype=torch.long)
        self._fill_indices(idx, dim, src.size(dim), elems_per_row, m, n, o)

        actual = torch.gather(src, dim, idx)
        expected = torch.zeros(idx_size, device=device, dtype=dtype)
        for i in range(idx_size[0]):
            for j in range(idx_size[1]):
                for k in range(idx_size[2]):
                    ii = [i, j, k]
                    ii[dim] = idx[i, j, k]
                    expected[i, j, k] = src[tuple(ii)]
        self.assertEqual(actual, expected, atol=0, rtol=0)

        # Guarded because torch.max isn't defined for complex types
        if not dtype.is_complex:
            src = make_tensor((3, 4, 5), device=device, dtype=dtype)
            expected, idx = src.max(2, True)
            actual = torch.gather(src, 2, idx)
            self.assertEqual(actual, expected, atol=0, rtol=0)

    @dtypes(torch.bool)
    def test_gather_bool(self, device, dtype):
        src = torch.tensor(((False, True), (True, True)), device=device, dtype=dtype)
        idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
        actual = torch.gather(src, 1, idx)
        expected = torch.tensor(((False, False), (True, True)), device=device, dtype=dtype)
        self.assertEqual(actual, expected, atol=0, rtol=0)

    def _test_scatter_base(self, fn, *, device, dtype, is_scalar, reduction,
                           unique_indices=True, include_self=True):
        m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
        elems_per_row = random.randint(1, 10)
        dim = random.randrange(3)

        idx_size = [m, n, o]
        idx_size[dim] = elems_per_row
        idx = torch.empty(tuple(idx_size), device=device, dtype=torch.long)
        self._fill_indices(idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o, unique_indices)

        if is_scalar:
            src = random.random()
        else:
            src_size = [random.randint(1, 5) + s for s in idx_size]
            src = make_tensor(tuple(src_size), device=device, dtype=dtype)

        base = make_tensor((m, n, o), device=device, dtype=dtype)
        if reduction is not None:
            if fn is torch.Tensor.scatter_reduce_:
                actual = fn(base.clone(), dim, idx, src, reduce=reduction, include_self=include_self)
            else:
                actual = fn(base.clone(), dim, idx, src, reduce=reduction)
        else:
            actual = fn(base.clone(), dim, idx, src)

        expected = base.clone()
        counts = torch.zeros(base.shape, dtype=torch.long, device=device) + include_self
        for i in range(idx_size[0]):
            for j in range(idx_size[1]):
                for k in range(idx_size[2]):
                    ii = [i, j, k]
                    ii[dim] = idx[i, j, k]
                    if fn is torch.Tensor.scatter_add_:
                        expected[tuple(ii)] += src[i, j, k]
                    else:
                        # method may be 'scatter_', 'scatter', 'scatter_reduce'
                        # or 'scatter_reduce_', the former two might have a reduction argument
                        # while the latter two always do
                        value = src if is_scalar else src[i, j, k]

                        if ((not include_self) and counts[tuple(ii)] == 0):
                            expected[tuple(ii)] = value
                        else:
                            if reduction == "add" or reduction == "sum":
                                expected[tuple(ii)] += value
                            elif reduction == "multiply" or reduction == "prod":
                                expected[tuple(ii)] *= value
                            elif reduction == "amax":
                                expected[tuple(ii)] = max(expected[tuple(ii)], value)
                            elif reduction == "amin":
                                expected[tuple(ii)] = min(expected[tuple(ii)], value)
                            elif reduction == "mean":
                                expected[tuple(ii)] += value
                            else:
                                expected[tuple(ii)] = value

                        counts[tuple(ii)] += 1

        if (reduction == "mean"):
            counts.masked_fill_(counts == 0, 1)
            if (dtype.is_floating_point or dtype.is_complex):
                expected /= counts
            else:
                expected.div_(counts, rounding_mode="floor")

        self.assertEqual(actual, expected, atol=0, rtol=0)

        # Tests empty index
        dst = make_tensor((2, 2), device=device, dtype=dtype)
        idx = torch.tensor((), device=device, dtype=torch.long)
        src = make_tensor((2, 2), device=device, dtype=dtype)
        if reduction is not None:
            actual = fn(dst, 0, idx, src, reduce=reduction)
        else:
            actual = fn(dst, 0, idx, src)
        self.assertEqual(actual, dst, atol=0, rtol=0)

    @dtypes(torch.float16, torch.float32, torch.complex64)
    def test_scatter_(self, device, dtype):
        self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
                                is_scalar=False, reduction=None)

    @dtypes(torch.float16, torch.float32, torch.complex64)
    def test_scatter__scalar(self, device, dtype):
        self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
                                is_scalar=True, reduction=None)

    # FIXME: RuntimeError: "cuda_scatter_gather_base_kernel_reduce_multiply" not implemented for 'ComplexFloat'
    @toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0)})
    @dtypesIfCUDA(torch.float16, torch.float32)
    @dtypes(torch.float16, torch.float32, torch.complex64)
    def test_scatter__reductions(self, device, dtype):
        for reduction in ("add", "multiply"):
            self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
                                    is_scalar=False, reduction=reduction)
            self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
                                    is_scalar=True, reduction=reduction)

    @dtypes(torch.float16, torch.float32, torch.complex64)
    def test_scatter_add_(self, device, dtype):
        self._test_scatter_base(torch.Tensor.scatter_add_, device=device, dtype=dtype,
                                is_scalar=False, reduction=None)

    @dtypes(torch.float32)
    def test_scatter_add_mult_index_base(self, device, dtype):
        m, n = 30, 40
        idx = torch.zeros(m, n, device=device, dtype=torch.long)
        src = torch.ones(m, n, device=device, dtype=dtype)
        res0 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(0, idx, src)
        res1 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(1, idx, src)

        self.assertEqual(res0[0, :], m * torch.ones(n, device=device, dtype=dtype), atol=0, rtol=0)
        self.assertEqual(res1[:, 0], n * torch.ones(m, device=device, dtype=dtype), atol=0, rtol=0)

    # FIXME: discrepancy between bool ReduceAdd on CUDA and CPU (a + b on CPU and buggy a && b on CUDA)
    @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
    def test_scatter_reduce_sum(self, device, dtype):
        for include_self in (True, False):
            self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
                                    is_scalar=False, reduction='sum', unique_indices=False,
                                    include_self=include_self)

    @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True))
    @dtypesIfCUDA(*get_all_fp_dtypes(include_half=True, include_bfloat16=True))
    def test_scatter_reduce_prod(self, device, dtype):
        for include_self in (True, False):
            self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
                                    is_scalar=False, reduction='prod', unique_indices=False,
                                    include_self=include_self)

    @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
    @dtypesIfCUDA(*get_all_fp_dtypes(include_half=True, include_bfloat16=True))
    def test_scatter_reduce_mean(self, device, dtype):
        for include_self in (True, False):
            self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
                                    is_scalar=False, reduction='mean', unique_indices=False,
                                    include_self=include_self)

    @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
    @dtypesIfCUDA(*get_all_fp_dtypes(include_half=True, include_bfloat16=True))
    def test_scatter_reduce_amax(self, device, dtype):
        for include_self in (True, False):
            self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
                                    is_scalar=False, reduction='amax', unique_indices=False,
                                    include_self=include_self)
            # simple test for nan/inf propagation
            if (dtype.is_floating_point):
                input = torch.zeros(3, device=device, dtype=dtype)
                src = torch.tensor([1, float('nan'), -float('inf'), -float('inf'), 2, float('inf')], device=device, dtype=dtype)
                idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
                input.scatter_reduce_(0, idx, src, 'amax', include_self=include_self)
                expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
                if (include_self):
                    expected_result[1] = 0
                self.assertEqual(input, expected_result)


    @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
    @dtypesIfCUDA(*get_all_fp_dtypes(include_half=True, include_bfloat16=True))
    def test_scatter_reduce_amin(self, device, dtype):
        for include_self in (True, False):
            self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
                                    is_scalar=False, reduction='amin', unique_indices=False,
                                    include_self=include_self)
            # simple test for nan/inf propagation
            if (dtype.is_floating_point):
                input = torch.zeros(3, device=device, dtype=dtype)
                src = torch.tensor([1, float('nan'), -2, -float('inf'), float('inf'), float('inf')], device=device, dtype=dtype)
                idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
                input.scatter_reduce_(0, idx, src, 'amin', include_self=include_self)
                expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
                if (include_self):
                    expected_result[2] = 0
                self.assertEqual(input, expected_result)