Ejemplo n.º 1
0
def _multi_tensor_adadelta(params: List[Tensor],
                           grads: List[Tensor],
                           square_avgs: List[Tensor],
                           acc_deltas: List[Tensor],
                           *,
                           lr: float,
                           weight_decay: float,
                           rho: float,
                           eps: float,
                           maximize: bool):

    if len(params) == 0:
        return

    if maximize:
        grads = torch._foreach_neg(grads)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(square_avgs, rho)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

    std = torch._foreach_add(square_avgs, eps)
    torch._foreach_sqrt_(std)

    deltas = torch._foreach_add(acc_deltas, eps)
    torch._foreach_sqrt_(deltas)
    torch._foreach_div_(deltas, std)
    torch._foreach_mul_(deltas, grads)

    torch._foreach_add_(params, deltas, alpha=-lr)

    torch._foreach_mul_(acc_deltas, rho)
    torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)
Ejemplo n.º 2
0
    def test_div_list(self, device, dtype):
        if dtype in torch.testing.integral_types_and(torch.bool):
            if self.device_type == 'cpu':
                with self.assertRaisesRegex(
                        RuntimeError,
                        "result type Float can't be cast to the desired output type"
                ):
                    self._test_bin_op_list(device, dtype, torch._foreach_div,
                                           torch._foreach_div_, torch.div)
            else:
                self.skipTest(
                    "Skipped! See https://github.com/pytorch/pytorch/issues/44489"
                )
            return

        for N in N_values:
            tensors1 = self._get_test_data(device, dtype, N)

            if dtype in [torch.bfloat16, torch.bool, torch.float16]:
                tensors2 = [
                    torch.zeros(N, N, device=device, dtype=dtype).add(2)
                    for _ in range(N)
                ]
            else:
                tensors2 = self._get_test_data(device, dtype, N)

            expected = [torch.div(tensors1[i], tensors2[i]) for i in range(N)]
            res = torch._foreach_div(tensors1, tensors2)
            torch._foreach_div_(tensors1, tensors2)
            self.assertEqual(res, tensors1)
            self.assertEqual(tensors1, res)
Ejemplo n.º 3
0
def adadelta(params: List[Tensor], grads: List[Tensor],
             square_avgs: List[Tensor], acc_deltas: List[Tensor], *, lr: float,
             weight_decay: float, rho: float, eps: float):
    r"""Functional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    """

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(square_avgs, rho)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

    std = torch._foreach_add(square_avgs, eps)
    torch._foreach_sqrt_(std)

    deltas = torch._foreach_add(acc_deltas, eps)
    torch._foreach_sqrt_(deltas)
    torch._foreach_div_(deltas, std)
    torch._foreach_mul_(deltas, grads)

    torch._foreach_add_(params, deltas, alpha=-lr)

    torch._foreach_mul_(acc_deltas, rho)
    torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)
Ejemplo n.º 4
0
def _multi_tensor_adam(params: List[Tensor],
                       grads: List[Tensor],
                       exp_avgs: List[Tensor],
                       exp_avg_sqs: List[Tensor],
                       max_exp_avg_sqs: List[Tensor],
                       state_steps: List[Tensor],
                       *,
                       amsgrad: bool,
                       beta1: float,
                       beta2: float,
                       lr: float,
                       weight_decay: float,
                       eps: float,
                       maximize: bool):

    if len(params) == 0:
        return

    # update steps
    torch._foreach_add_(state_steps, 1)

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
    bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if amsgrad:
        # Maintains the maximum of all 2nd moment running avg. till now
        max_exp_avg_sqs = torch._foreach_maximum(max_exp_avg_sqs, exp_avg_sqs)  # type: ignore[assignment]

        # Use the max. for normalizing running avg. of gradient
        max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
        bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
        torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction_sqrt)
        denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
    else:
        exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
        bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
        torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
        denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size = [(lr / bc) * -1 for bc in bias_correction1]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)
Ejemplo n.º 5
0
def _multi_tensor_nadam(params: List[Tensor], grads: List[Tensor],
                        exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor],
                        mu_products: List[Tensor], state_steps: List[Tensor],
                        *, beta1: float, beta2: float, lr: float,
                        weight_decay: float, momentum_decay: float,
                        eps: float):

    if len(params) == 0:
        return

    # update steps
    torch._foreach_add_(state_steps, 1)

    bias_correction1 = [1 - beta1**step.item() for step in state_steps]
    bias_correction2 = [1 - beta2**step.item() for step in state_steps]
    mus = [
        beta1 * (1. - 0.5 * (0.96**(step.item() * momentum_decay)))
        for step in state_steps
    ]
    mu_nexts = [
        beta1 * (1. - 0.5 * (0.96**((step.item() + 1) * momentum_decay)))
        for step in state_steps
    ]

    # update mu_products
    torch._foreach_mul_(mu_products, mus)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
    denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size_grads = [(lr * (1. - mu) / (1. - mu_product.item())) * -1
                       for mu_product, mu in zip(mu_products, mus)]
    step_size_expavg = [
        (lr * mu_next / (1. - mu_product.item() * mu_next)) * -1
        for mu_product, mu_next in zip(mu_products, mu_nexts)
    ]
    torch._foreach_addcdiv_(params, grads, denom, step_size_grads)
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size_expavg)
Ejemplo n.º 6
0
def nadam(params: List[Tensor],
          grads: List[Tensor],
          exp_avg: List[Tensor],
          exp_avg_sq: List[Tensor],
          mu_products: List[Tensor],
          states: List[Dict],
          *,
          beta1: float,
          beta2: float,
          lr: float,
          weight_decay: float,
          momentum_decay: float,
          eps: float):
    r"""Functional API that performs NAdam algorithm computation.

    See :class:`~torch.optim.NAdam` for details.
    """

    bias_correction1 = [1 - beta1 ** state['step'] for state in states]
    bias_correction2 = [1 - beta2 ** state['step'] for state in states]
    mus = [beta1 * (1. - 0.5 * (0.96 ** (state['step'] * momentum_decay))) for state in states]
    mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((state['step'] + 1) * momentum_decay)))
                for state in states]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avg, beta1)
    torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sq, beta2)
    torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sq)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
    denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size_grads = [(lr * (1. - mu) / (1. - mu_product)) * -1
                       for mu_product, mu in zip(mu_products, mus)]
    step_size_expavg = [(lr * mu_next / (1. - mu_product * mu_next)) * -1
                        for mu_product, mu_next in zip(mu_products, mu_nexts)]
    torch._foreach_addcdiv_(params, grads, denom, step_size_grads)
    torch._foreach_addcdiv_(params, exp_avg, denom, step_size_expavg)
Ejemplo n.º 7
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            amsgrad = group['amsgrad']

            grads = []
            states = []
            exp_avg = []
            exp_avg_sq = []
            max_exp_avg_sq = []
            params_with_grad = []

            for p in group['params']:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'Adam does not support sparse gradients, please consider SparseAdam instead'
                        )
                    params_with_grad.append(p)
                    grads.append(p.grad)

            for p in params_with_grad:
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(
                        p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(
                        p, memory_format=torch.preserve_format)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)

                exp_avg.append(state['exp_avg'])
                exp_avg_sq.append(state['exp_avg_sq'])

                if amsgrad:
                    max_exp_avg_sq.append(state['max_exp_avg_sq'])

                state['step'] += 1
                states.append(state)

            beta1, beta2 = group['betas']

            bias_correction1 = [1 - beta1**state['step'] for state in states]
            bias_correction2 = [1 - beta2**state['step'] for state in states]
            if group['weight_decay'] != 0:
                grads = torch._foreach_add(grads,
                                           params_with_grad,
                                           alpha=group['weight_decay'])

            #
            # Decay the first and second moment running average coefficient
            #
            torch._foreach_mul_(exp_avg, beta1)
            torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

            torch._foreach_mul_(exp_avg_sq, beta2)
            torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                max_exp_avg_sq = torch._foreach_maximum(
                    max_exp_avg_sq, exp_avg_sq)

                # Use the max. for normalizing running avg. of gradient
                max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sq)
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction_sqrt)
                denom = torch._foreach_add(max_exp_avg_sq_sqrt, group['eps'])
            else:
                exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sq)
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
                denom = torch._foreach_add(exp_avg_sq_sqrt, group['eps'])

            step_size = [(group['lr'] / bc) * -1 for bc in bias_correction1]
            torch._foreach_addcdiv_(params_with_grad, exp_avg, denom,
                                    step_size)

        return loss
Ejemplo n.º 8
0
def _multi_tensor_adamw(params: List[Tensor], grads: List[Tensor],
                        exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor],
                        max_exp_avg_sqs: List[Tensor],
                        state_steps: List[Tensor], *, amsgrad: bool,
                        beta1: float, beta2: float, lr: float,
                        weight_decay: float, eps: float, maximize: bool,
                        capturable: bool):
    if len(params) == 0:
        return

    if capturable:
        assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
            "If capturable=True, params and state_steps must be CUDA tensors."

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    grads = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in grads
    ]
    exp_avgs = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs
    ]
    exp_avg_sqs = [
        torch.view_as_real(x) if torch.is_complex(x) else x
        for x in exp_avg_sqs
    ]
    params = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in params
    ]

    # update steps
    torch._foreach_add_(state_steps, 1)

    # Perform stepweight decay
    torch._foreach_mul_(params, 1 - lr * weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if capturable:
        # TODO: use foreach_pow if/when foreach_pow is added
        bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
        bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_correction1, 1)
        torch._foreach_sub_(bias_correction2, 1)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_neg_(bias_correction2)

        # foreach_div doesn't allow a scalar as the first arg
        step_size = torch._foreach_div(bias_correction1, lr)
        torch._foreach_reciprocal_(step_size)
        torch._foreach_neg_(step_size)

        bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
            # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
            torch._foreach_div_(
                max_exp_avg_sq_sqrt,
                torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps_over_step_size)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(
                exp_avg_sq_sqrt,
                torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)

        torch._foreach_addcdiv_(params, exp_avgs, denom)
    else:
        bias_correction1 = [1 - beta1**step.item() for step in state_steps]
        bias_correction2 = [1 - beta2**step.item() for step in state_steps]

        step_size = [(lr / bc) * -1 for bc in bias_correction1]

        bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

        torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)
Ejemplo n.º 9
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            grads = []
            params_with_grad = []
            states = []
            square_avgs = []
            acc_deltas = []

            rho, eps = group['rho'], group['eps']

            for p in group['params']:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'Adadelta does not support sparse gradients')

                    grads.append(p.grad)
                    params_with_grad.append(p)

                    state = self.state[p]

                    # State initialization
                    if len(state) == 0:
                        state['step'] = 0
                        state['square_avg'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)
                        state['acc_delta'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)

                    square_avgs.append(state['square_avg'])
                    acc_deltas.append(state['acc_delta'])

                    state['step'] += 1
                    states.append(state)

            if group['weight_decay'] != 0:
                torch._foreach_add_(grads,
                                    params_with_grad,
                                    alpha=group['weight_decay'])

            torch._foreach_mul_(square_avgs, rho)
            torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

            std = torch._foreach_add(square_avgs, eps)
            torch._foreach_sqrt_(std)

            deltas = torch._foreach_add(acc_deltas, eps)
            torch._foreach_sqrt_(deltas)
            torch._foreach_div_(deltas, std)
            torch._foreach_mul_(deltas, grads)

            torch._foreach_add_(params_with_grad, deltas, alpha=-group['lr'])

            torch._foreach_mul_(acc_deltas, rho)
            torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)

        return loss
Ejemplo n.º 10
0
    def test_tensorlist_int_scalar_op(self, device, dtype):
        for N in N_values:
            for foreach_bin_op, foreach_bin_op_, torch_bin_op in self.bin_ops:
                tensors = self._get_test_data(device, dtype, N)
                scalar = 3

                if dtype == torch.bool:
                    if foreach_bin_op == torch._foreach_sub:
                        with self.assertRaisesRegex(
                                RuntimeError,
                                "Subtraction, the `-` operator,"):
                            res = foreach_bin_op(tensors, scalar)
                        with self.assertRaisesRegex(
                                RuntimeError,
                                "Subtraction, the `-` operator,"):
                            expected = [
                                torch_bin_op(t, scalar) for t in tensors
                            ]

                        # Test In-place
                        with self.assertRaisesRegex(
                                RuntimeError,
                                "Subtraction, the `-` operator,"):
                            foreach_bin_op_(tensors, scalar)

                        with self.assertRaisesRegex(
                                RuntimeError,
                                "Subtraction, the `-` operator,"):
                            [t.sub_(scalar) for t in tensors]
                        continue

                    res = foreach_bin_op(tensors, scalar)
                    expected = [torch_bin_op(t, scalar) for t in tensors]
                    self.assertEqual(res, expected)

                    # Test In-place
                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        foreach_bin_op_(tensors, scalar)

                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        [t.div_(scalar) for t in tensors]

                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        [t.mul_(scalar) for t in tensors]

                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        [t.add_(scalar) for t in tensors]

                    with self.assertRaisesRegex(
                            RuntimeError,
                            "Subtraction, the `-` operator, with a bool"):
                        [t.sub_(scalar) for t in tensors]
                    continue

                expected = [torch_bin_op(t, scalar) for t in tensors]
                res = foreach_bin_op(tensors, scalar)

                # In case of In-place division with integers, we can't change the dtype
                if foreach_bin_op_ == torch._foreach_div_ and dtype in torch.testing.integral_types(
                ):
                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        [t.div_(scalar) for t in tensors]

                    with self.assertRaisesRegex(
                            RuntimeError,
                            "can't be cast to the desired output type"):
                        torch._foreach_div_(tensors, scalar)
                    continue

                self.assertEqual(res, expected)

                # In case of In-place op, we can't change the dtype
                foreach_bin_op_(tensors, scalar)
                self.assertEqual(tensors, expected)