Ejemplo n.º 1
0
    def init_training_algo(self, num_envs=None):
        """
        Initialize the training algorithm.

        This primarily calls the object creation functions for the A2C or PPO2 and the optimizer, but this also spawns
        a number of parallel environments, based on the self.num_cpu or num_envs input (if provided).

        Note, the spawning of parallel environments is VERY slow due to deepcopying the termination sets.  I tried some
        work arounds, but nothing worked properly, so we are stuck with it for now.

        :param num_envs: an override for the default number of environments to spawn (in self.num_cpu)
        """
        if not num_envs:
            num_envs = self.num_cpu

        if self.model_type == "A2C":
            # check to make sure that the A2C parameters are set
            assert self.optim_alpha
            self.training_envs = [deepcopy(self.env) for i in range(num_envs)
                                  ]  # spawn parallel environments

            if self.acmodel.recurrent:
                self.memories = torch.zeros(num_envs,
                                            self.acmodel.memory_size,
                                            device=self.device)

            self.algo = torch_ac.A2CAlgo(
                self.training_envs, self.acmodel, self.device,
                self.frames_per_proc, self.discount, self.lr, self.gae_lambda,
                self.entropy_coef, self.value_loss_coef, self.max_grad_norm,
                self.recurrence, self.optim_alpha, self.optim_eps,
                self.preprocess_obss)
        elif self.model_type == "PPO2":
            # check to see if the PPO2 parameters are set
            assert self.clip_eps and self.epochs and self.batch_size
            self.training_envs = [deepcopy(self.env) for i in range(num_envs)
                                  ]  # spawn parallel environments

            if self.acmodel.recurrent:
                self.memories = torch.zeros(num_envs,
                                            self.acmodel.memory_size,
                                            device=self.device)

            self.algo = torch_ac.PPOAlgo(
                self.training_envs, self.acmodel, self.device,
                self.frames_per_proc, self.discount, self.lr, self.gae_lambda,
                self.entropy_coef, self.value_loss_coef, self.max_grad_norm,
                self.recurrence, self.optim_eps, self.clip_eps, self.epochs,
                self.batch_size, self.preprocess_obss)
        else:
            raise ValueError("Incorrect algorithm name: {}".format(algo_type))

        # load the optimizer state, if it exists
        if "optimizer_state" in self.status:
            self.algo.optimizer.load_state_dict(self.status["optimizer_state"])
        self.txt_logger.info("Optimizer loaded\n")
Ejemplo n.º 2
0
if "model_state" in status:
    acmodel.load_state_dict(status["model_state"])
    txt_logger.info("Loading model from existing run.\n")

elif args.pretrained_gnn:
    acmodel.load_pretrained_gnn(pretrained_status["model_state"])
    txt_logger.info("Pretrained model loaded.\n")

acmodel.to(device)
txt_logger.info("Model loaded.\n")
txt_logger.info("{}\n".format(acmodel))

# Load algo
if args.algo == "a2c":
    algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
                            args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
                            args.optim_alpha, args.optim_eps, preprocess_obss)
elif args.algo == "ppo":
    algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
                            args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
                            args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss)
else:
    raise ValueError("Incorrect algorithm name: {}".format(args.algo))

if "optimizer_state" in status:
    algo.optimizer.load_state_dict(status["optimizer_state"])
    txt_logger.info("Loading optimizer from existing run.\n")
txt_logger.info("Optimizer loaded.\n")

# init the evaluator
if args.eval:
Ejemplo n.º 3
0
def main():
    # Parse arguments

    parser = argparse.ArgumentParser()

    ## General parameters
    parser.add_argument(
        "--algo",
        required=True,
        help="algorithm to use: a2c | ppo | ppo_intrinsic (REQUIRED)")
    parser.add_argument("--env",
                        required=True,
                        help="name of the environment to train on (REQUIRED)")
    parser.add_argument(
        "--model",
        default=None,
        help="name of the model (default: {ENV}_{ALGO}_{TIME})")
    parser.add_argument("--seed",
                        type=int,
                        default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--log-interval",
                        type=int,
                        default=1,
                        help="number of updates between two logs (default: 1)")
    parser.add_argument(
        "--save-interval",
        type=int,
        default=10,
        help=
        "number of updates between two saves (default: 10, 0 means no saving)")
    parser.add_argument("--procs",
                        type=int,
                        default=16,
                        help="number of processes (default: 16)")
    parser.add_argument("--frames",
                        type=int,
                        default=10**7,
                        help="number of frames of training (default: 1e7)")

    ## Parameters for main algorithm
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="number of epochs for PPO (default: 4)")
    parser.add_argument("--batch-size",
                        type=int,
                        default=256,
                        help="batch size for PPO (default: 256)")
    parser.add_argument(
        "--frames-per-proc",
        type=int,
        default=None,
        help=
        "number of frames per process before update (default: 5 for A2C and 128 for PPO)"
    )
    parser.add_argument("--discount",
                        type=float,
                        default=0.99,
                        help="discount factor (default: 0.99)")
    parser.add_argument("--lr",
                        type=float,
                        default=0.001,
                        help="learning rate (default: 0.001)")
    parser.add_argument(
        "--gae-lambda",
        type=float,
        default=0.95,
        help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)"
    )
    parser.add_argument("--entropy-coef",
                        type=float,
                        default=0.01,
                        help="entropy term coefficient (default: 0.01)")
    parser.add_argument("--value-loss-coef",
                        type=float,
                        default=0.5,
                        help="value loss term coefficient (default: 0.5)")
    parser.add_argument("--max-grad-norm",
                        type=float,
                        default=0.5,
                        help="maximum norm of gradient (default: 0.5)")
    parser.add_argument(
        "--optim-eps",
        type=float,
        default=1e-8,
        help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
    parser.add_argument("--optim-alpha",
                        type=float,
                        default=0.99,
                        help="RMSprop optimizer alpha (default: 0.99)")
    parser.add_argument("--clip-eps",
                        type=float,
                        default=0.2,
                        help="clipping epsilon for PPO (default: 0.2)")
    parser.add_argument(
        "--recurrence",
        type=int,
        default=1,
        help=
        "number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory."
    )
    parser.add_argument("--text",
                        action="store_true",
                        default=False,
                        help="add a GRU to the model to handle text input")
    parser.add_argument("--visualize",
                        default=False,
                        help="show real time CNN layer weight changes")

    args = parser.parse_args()

    args.mem = args.recurrence > 1

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"

    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    utils.seed(args.seed)

    # Set device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    txt_logger.info(f"Device: {device}\n")

    # Load environments

    envs = []
    for i in range(args.procs):
        envs.append(utils.make_env(args.env, args.seed + 10000 * i))
    txt_logger.info("Environments loaded\n")

    # Load training status

    try:
        status = utils.get_status(model_dir)
    except OSError:
        status = {"num_frames": 0, "update": 0}
    txt_logger.info("Training status loaded\n")

    # Load observations preprocessor

    obs_space, preprocess_obss = utils.get_obss_preprocessor(
        envs[0].observation_space)
    if "vocab" in status:
        preprocess_obss.vocab.load_vocab(status["vocab"])
    txt_logger.info("Observations preprocessor loaded")

    # Load model

    acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
    if "model_state" in status:
        acmodel.load_state_dict(status["model_state"])
    acmodel.to(device)
    txt_logger.info("Model loaded\n")
    txt_logger.info("{}\n".format(acmodel))

    # Load algo

    if args.algo == "a2c":
        algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_alpha, args.optim_eps,
                                preprocess_obss)
    elif args.algo == "ppo":
        algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_eps, args.clip_eps, args.epochs,
                                args.batch_size, preprocess_obss)

    elif args.algo == "ppo_intrinsic":
        algo = torch_ac.PPOAlgoIntrinsic(
            envs, acmodel, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)
    elif args.algo == "a2c_intrinsic":
        algo = torch_ac.A2CAlgoIntrinsic(
            envs, acmodel, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_alpha,
            args.optim_eps, preprocess_obss)
    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    if "optimizer_state" in status:
        algo.optimizer.load_state_dict(status["optimizer_state"])
    txt_logger.info("Optimizer loaded\n")

    # Train model

    num_frames = status["num_frames"]
    update = status["update"]
    start_time = time.time()

    print_visual = args.visualize
    if print_visual:
        fig, axs = plt.subplots(1, 3)
        fig.suptitle('Convolution Layer Weights Normalized Difference')

    while num_frames < args.frames:

        # Store copies of s_t model params
        old_parameters = {}
        for name, param in acmodel.named_parameters():
            old_parameters[name] = param.detach().numpy().copy()

        # Update model parameters
        update_start_time = time.time()
        exps, logs1 = algo.collect_experiences()
        logs2 = algo.update_parameters(exps)
        logs = {**logs1, **logs2}
        update_end_time = time.time()

        # Store copies of s_t+1 model params
        new_parameters = {}
        for name, param in acmodel.named_parameters():
            new_parameters[name] = param.detach().numpy().copy()

        # Compute L2 Norm of model state differences
        # Print model weight change visualization
        for index in range(len(old_parameters.keys())):
            if index == 0 or index == 2 or index == 4:
                key = list(old_parameters.keys())[index]
                old_weights = old_parameters[key]
                new_weights = new_parameters[key]
                norm_diff = numpy.linalg.norm(new_weights - old_weights)
                diff_matrix = abs(new_weights - old_weights)
                diff_matrix[:, :, 0, 0] = normalize(diff_matrix[:, :, 0, 0],
                                                    norm='max',
                                                    axis=0)
                if print_visual:
                    axs[int(index / 2)].imshow(diff_matrix[:, :, 0, 0],
                                               cmap='Greens',
                                               interpolation='nearest')

        # This allows the plots to update as the model trains
        if print_visual:
            plt.ion()
            plt.show()
            plt.pause(0.001)

        num_frames += logs["num_frames"]
        update += 1

        # Print logs

        if update % args.log_interval == 0:
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = int(time.time() - start_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            rreturn_per_episode = utils.synthesize(
                logs["reshaped_return_per_episode"])
            num_frames_per_episode = utils.synthesize(
                logs["num_frames_per_episode"])

            header = ["update", "frames", "FPS", "duration"]
            data = [update, num_frames, fps, duration]
            header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
            data += rreturn_per_episode.values()
            header += [
                "num_frames_" + key for key in num_frames_per_episode.keys()
            ]
            data += num_frames_per_episode.values()
            header += [
                "entropy", "value", "policy_loss", "value_loss", "grad_norm"
            ]
            data += [
                logs["entropy"], logs["value"], logs["policy_loss"],
                logs["value_loss"], logs["grad_norm"]
            ]

            txt_logger.info(
                "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
                .format(*data))

            header += ["return_" + key for key in return_per_episode.keys()]
            data += return_per_episode.values()

            if status["num_frames"] == 0:
                csv_logger.writerow(header)
            csv_logger.writerow(data)
            csv_file.flush()

            for field, value in zip(header, data):
                tb_writer.add_scalar(field, value, num_frames)

        # Save status

        if args.save_interval > 0 and update % args.save_interval == 0:
            status = {
                "num_frames": num_frames,
                "update": update,
                "model_state": acmodel.state_dict(),
                "optimizer_state": algo.optimizer.state_dict()
            }
            if hasattr(preprocess_obss, "vocab"):
                status["vocab"] = preprocess_obss.vocab.vocab
            utils.save_status(status, model_dir)
            txt_logger.info("Status saved")
def main(raw_args=None):

    # Parse arguments
    parser = argparse.ArgumentParser()

    ## General parameters
    parser.add_argument("--algo",
                        required=True,
                        help="algorithm to use: a2c | ppo | ipo (REQUIRED)")
    parser.add_argument("--domain1",
                        required=True,
                        help="name of the first domain to train on (REQUIRED)")
    parser.add_argument(
        "--domain2",
        required=True,
        help="name of the second domain to train on (REQUIRED)")
    parser.add_argument(
        "--p1",
        required=True,
        type=float,
        help="Proportion of training environments from first domain (REQUIRED)"
    )
    parser.add_argument("--model", required=True, help="name of the model")
    parser.add_argument("--seed",
                        type=int,
                        default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--log-interval",
                        type=int,
                        default=1,
                        help="number of updates between two logs (default: 1)")
    parser.add_argument(
        "--save-interval",
        type=int,
        default=10,
        help=
        "number of updates between two saves (default: 10, 0 means no saving)")
    parser.add_argument("--procs",
                        type=int,
                        default=16,
                        help="number of processes (default: 16)")
    parser.add_argument("--frames",
                        type=int,
                        default=10**7,
                        help="number of frames of training (default: 1e7)")

    ## Parameters for main algorithm
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="number of epochs for PPO (default: 4)")
    parser.add_argument("--batch-size",
                        type=int,
                        default=256,
                        help="batch size for PPO (default: 256)")
    parser.add_argument(
        "--frames-per-proc",
        type=int,
        default=None,
        help=
        "number of frames per process before update (default: 5 for A2C and 128 for PPO)"
    )
    parser.add_argument("--discount",
                        type=float,
                        default=0.99,
                        help="discount factor (default: 0.99)")
    parser.add_argument("--lr",
                        type=float,
                        default=0.001,
                        help="learning rate (default: 0.001)")
    parser.add_argument(
        "--gae-lambda",
        type=float,
        default=0.95,
        help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)"
    )
    parser.add_argument("--entropy-coef",
                        type=float,
                        default=0.01,
                        help="entropy term coefficient (default: 0.01)")
    parser.add_argument("--value-loss-coef",
                        type=float,
                        default=0.5,
                        help="value loss term coefficient (default: 0.5)")
    parser.add_argument("--max-grad-norm",
                        type=float,
                        default=0.5,
                        help="maximum norm of gradient (default: 0.5)")
    parser.add_argument(
        "--optim-eps",
        type=float,
        default=1e-8,
        help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
    parser.add_argument("--optim-alpha",
                        type=float,
                        default=0.99,
                        help="RMSprop optimizer alpha (default: 0.99)")
    parser.add_argument("--clip-eps",
                        type=float,
                        default=0.2,
                        help="clipping epsilon for PPO (default: 0.2)")
    parser.add_argument(
        "--recurrence",
        type=int,
        default=1,
        help=
        "number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory."
    )
    parser.add_argument("--text",
                        action="store_true",
                        default=False,
                        help="add a GRU to the model to handle text input")

    args = parser.parse_args(raw_args)

    args.mem = args.recurrence > 1

    # Check PyTorch version
    if (torch.__version__ != '1.2.0'):
        raise ValueError(
            "PyTorch version must be 1.2.0 (see README). Your version is {}.".
            format(torch.__version__))

    if args.mem:
        raise ValueError("Policies with memory not supported.")

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = args.model

    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    torch.backends.cudnn.deterministic = True
    utils.seed(args.seed)

    # Set device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    txt_logger.info(f"Device: {device}\n")

    # Load environments from different domains
    domain1 = args.domain1  # e.g., 'MiniGrid-ColoredKeysRed-v0'
    domain2 = args.domain2  # e.g., 'MiniGrid-ColoredKeysYellow-v0'

    p1 = args.p1  # Proportion of environments from domain1

    num_envs_total = args.procs  # Total number of environments
    num_domain1 = math.ceil(
        p1 * num_envs_total)  # Number of environments in domain1
    num_domain2 = num_envs_total - num_domain1  # Number of environments in domain2

    # Environments from domain1
    envs1 = []
    for i in range(num_domain1):
        envs1.append(utils.make_env(domain1, args.seed + 10000 * i))

    # Environments from domain2
    envs2 = []
    for i in range(num_domain2):
        envs2.append(utils.make_env(domain2, args.seed + 10000 * i))

    # All environments
    envs = envs1 + envs2

    txt_logger.info("Environments loaded\n")

    # Load training status

    try:
        status = utils.get_status(model_dir)
    except OSError:
        status = {"num_frames": 0, "update": 0}
    txt_logger.info("Training status loaded\n")

    # Load observations preprocessor

    obs_space, preprocess_obss = utils.get_obss_preprocessor(
        envs[0].observation_space)
    if "vocab" in status:
        preprocess_obss.vocab.load_vocab(status["vocab"])
    txt_logger.info("Observations preprocessor loaded")

    if args.algo == "ipo":
        # Load model for IPO game
        acmodel = ACModel_average(obs_space, envs[0].action_space, args.mem,
                                  args.text)
        if "model_state" in status:
            acmodel.load_state_dict(status["model_state"])
        acmodel.to(device)
        txt_logger.info("Model loaded\n")
        txt_logger.info("{}\n".format(acmodel))

    else:
        # Load model (for standard PPO or A2C)
        acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
        if "model_state" in status:
            acmodel.load_state_dict(status["model_state"])
        acmodel.to(device)
        txt_logger.info("Model loaded\n")
        txt_logger.info("{}\n".format(acmodel))

    # Load algo

    if args.algo == "a2c":
        algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_alpha, args.optim_eps,
                                preprocess_obss)
        if "optimizer_state" in status:
            algo.optimizer.load_state_dict(status["optimizer_state"])
            txt_logger.info("Optimizer loaded\n")

    elif args.algo == "ppo":
        algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_eps, args.clip_eps, args.epochs,
                                args.batch_size, preprocess_obss)

        if "optimizer_state" in status:
            algo.optimizer.load_state_dict(status["optimizer_state"])
            txt_logger.info("Optimizer loaded\n")

    elif args.algo == "ipo":
        # One algo per domain. These have different envivonments, but shared acmodel
        algo1 = torch_ac.IPOAlgo(
            envs1, acmodel, 1, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)

        algo2 = torch_ac.IPOAlgo(
            envs2, acmodel, 2, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)

        if "optimizer_state1" in status:
            algo1.optimizer.load_state_dict(status["optimizer_state1"])
            txt_logger.info("Optimizer 1 loaded\n")
        if "optimizer_state2" in status:
            algo2.optimizer.load_state_dict(status["optimizer_state2"])
            txt_logger.info("Optimizer 2 loaded\n")

    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    # Train model

    num_frames = status["num_frames"]
    update = status["update"]
    start_time = time.time()

    while num_frames < args.frames:
        # Update model parameters

        update_start_time = time.time()

        if args.algo == "ipo":

            # Standard method

            # Collect experiences on first domain
            exps1, logs_exps1 = algo1.collect_experiences()

            # Update params of model corresponding to first domain
            logs_algo1 = algo1.update_parameters(exps1)

            # Collect experiences on second domain
            exps2, logs_exps2 = algo2.collect_experiences()

            # Update params of model corresponding to second domain
            logs_algo2 = algo2.update_parameters(exps2)

            # Update end time
            update_end_time = time.time()

            # Combine logs
            logs_exps = {
                'return_per_episode':
                logs_exps1["return_per_episode"] +
                logs_exps2["return_per_episode"],
                'reshaped_return_per_episode':
                logs_exps1["reshaped_return_per_episode"] +
                logs_exps2["reshaped_return_per_episode"],
                'num_frames_per_episode':
                logs_exps1["num_frames_per_episode"] +
                logs_exps2["num_frames_per_episode"],
                'num_frames':
                logs_exps1["num_frames"] + logs_exps2["num_frames"]
            }

            logs_algo = {
                'entropy':
                (num_domain1 * logs_algo1["entropy"] +
                 num_domain2 * logs_algo2["entropy"]) / num_envs_total,
                'value': (num_domain1 * logs_algo1["value"] +
                          num_domain2 * logs_algo2["value"]) / num_envs_total,
                'policy_loss':
                (num_domain1 * logs_algo1["policy_loss"] +
                 num_domain2 * logs_algo2["policy_loss"]) / num_envs_total,
                'value_loss':
                (num_domain1 * logs_algo1["value_loss"] +
                 num_domain2 * logs_algo2["value_loss"]) / num_envs_total,
                'grad_norm':
                (num_domain1 * logs_algo1["grad_norm"] +
                 num_domain2 * logs_algo2["grad_norm"]) / num_envs_total
            }

            logs = {**logs_exps, **logs_algo}
            num_frames += logs["num_frames"]

        else:
            exps, logs1 = algo.collect_experiences()
            logs2 = algo.update_parameters(exps)
            logs = {**logs1, **logs2}
            update_end_time = time.time()
            num_frames += logs["num_frames"]

        update += 1

        # Print logs

        if update % args.log_interval == 0:
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = int(time.time() - start_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            rreturn_per_episode = utils.synthesize(
                logs["reshaped_return_per_episode"])
            num_frames_per_episode = utils.synthesize(
                logs["num_frames_per_episode"])

            header = ["update", "frames", "FPS", "duration"]
            data = [update, num_frames, fps, duration]
            header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
            data += rreturn_per_episode.values()
            header += [
                "num_frames_" + key for key in num_frames_per_episode.keys()
            ]
            data += num_frames_per_episode.values()
            header += [
                "entropy", "value", "policy_loss", "value_loss", "grad_norm"
            ]
            data += [
                logs["entropy"], logs["value"], logs["policy_loss"],
                logs["value_loss"], logs["grad_norm"]
            ]

            txt_logger.info(
                "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
                .format(*data))

            header += ["return_" + key for key in return_per_episode.keys()]
            data += return_per_episode.values()

            # header += ["debug_last_env_reward"]
            # data += [logs["debug_last_env_reward"]]

            header += ["total_loss"]
            data += [
                logs["policy_loss"] - args.entropy_coef * logs["entropy"] +
                args.value_loss_coef * logs["value_loss"]
            ]

            if status["num_frames"] == 0:
                csv_logger.writerow(header)

            csv_logger.writerow(data)
            csv_file.flush()

            for field, value in zip(header, data):
                tb_writer.add_scalar(field, value, num_frames)

        # Save status

        if args.save_interval > 0 and update % args.save_interval == 0:

            if args.algo == "ipo":
                status = {
                    "num_frames": num_frames,
                    "update": update,
                    "model_state": acmodel.state_dict(),
                    "optimizer_state1": algo1.optimizer.state_dict(),
                    "optimizer_state2": algo2.optimizer.state_dict()
                }
            else:
                status = {
                    "num_frames": num_frames,
                    "update": update,
                    "model_state": acmodel.state_dict(),
                    "optimizer_state": algo.optimizer.state_dict()
                }

            if hasattr(preprocess_obss, "vocab"):
                status["vocab"] = preprocess_obss.vocab.vocab
            utils.save_status(status, model_dir)
            txt_logger.info("Status saved")
Ejemplo n.º 5
0
j = 0
if args.t_iter > 0:
    teach_acmodel = ACModel(obs_space, envs[0].action_space, args.mem,
                            args.text)
    teach_acmodel.to(device)
    teacher_hist_models = [teach_acmodel]

    print("Starting to teach")
    if np.random.random() < args.historical_averaging:
        md = copy.deepcopy(teach_acmodel)
    else:
        md = teach_acmodel
    while j < args.t_iter:
        algo_teacher = torch_ac.A2CAlgo(
            [teacher_env], md, device, 10, args.discount, args.lr,
            args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_alpha,
            args.optim_eps, preprocess_obss)
        exps, logs1 = algo_teacher.collect_experiences()
        logs2 = algo_teacher.update_parameters(exps)
        j += 1
        if np.random.random() < args.historical_averaging:
            teacher_hist_models.append(md)
            md_index = np.random.choice(range(len(teacher_hist_models)), 1)[0]
            md = copy.deepcopy(teacher_hist_models[md_index])
        print("Finished teaching iteration ", str(j))

    teacher_env.close()
    print("Done teaching")

if args.nt_iters > 0:
Ejemplo n.º 6
0
    txt_logger.info("Observations preprocessor loaded")

    # Load model

    acmodel = ACModel(envs[0].observation_space, envs[0].action_space, memory, False)
    if "model_state" in status:
        acmodel.load_state_dict(status["model_state"])
    acmodel.to(device)
    txt_logger.info("Model loaded\n")
    txt_logger.info("{}\n".format(acmodel))

    # Load algo

    if algorithm == "a2c":
        algo = torch_ac.A2CAlgo(envs, acmodel, device, 5, discount, lr, gae_lambda,
                                entropy_coef, value_loss_coef, max_grad_norm, recurrence,
                                optim_alpha, optim_eps, preprocess_obss)
    elif algorithm == "ppo":
        algo = torch_ac.PPOAlgo(envs, acmodel, device, 128, discount, lr, gae_lambda,
                                entropy_coef, value_loss_coef, max_grad_norm, recurrence,
                                optim_eps, clip_eps, epochs, batch_size, preprocess_obss)
    else:
        raise ValueError("Incorrect algorithm name: {}".format(algorithm))

    if "optimizer_state" in status:
        algo.optimizer.load_state_dict(status["optimizer_state"])
    txt_logger.info("Optimizer loaded\n")

    # Train model

    num_frames = status["num_frames"]