Ejemplo n.º 1
0
                      lr=0.01,
                      explainer_hidden=[10],
                      conceptizator='identity_bool')

    start = time.time()
    trainer.fit(model, train_loader, val_loader)
    print(f"Concept mask: {model.model[0].concept_mask}")
    model.freeze()
    model_results = trainer.test(model, test_dataloaders=test_loader)
    for j in range(n_classes):
        n_used_concepts = sum(model.model[0].concept_mask[j] > 0.5)
        print(f"Extracted concepts: {n_used_concepts}")
    results, f = model.explain_class(val_loader,
                                     val_loader,
                                     test_loader,
                                     topk_explanations=5,
                                     x_to_bool=None,
                                     max_accuracy=True,
                                     concept_names=concept_names)
    end = time.time() - start
    results['model_accuracy'] = model_results[0]['test_acc']
    results['extraction_time'] = end

    results_list.append(results)
    extracted_concepts = []
    all_concepts = model.model[0].concept_mask[0] > 0.5
    common_concepts = model.model[0].concept_mask[0] > 0.5
    for j in range(n_classes):
        n_used_concepts = sum(model.model[0].concept_mask[j] > 0.5)
        print(f"Extracted concepts: {n_used_concepts}")
        print(f"Explanation: {f[j]['explanation']}")
Ejemplo n.º 2
0
                              lr=0.01,
                              explainer_hidden=[20, 20],
                              temperature=tau,
                              l1=l1)

            start = time.time()
            trainer.fit(model, train_loader, val_loader)
            print(f"Gamma: {model.model[0].concept_mask}")
            model.freeze()
            model_results = trainer.test(model, test_dataloaders=test_loader)
            for j in range(n_classes):
                n_used_concepts = sum(model.model[0].concept_mask[j] > 0.5)
                print(f"Extracted concepts: {n_used_concepts}")
            results, f = model.explain_class(val_loader,
                                             train_loader,
                                             test_loader,
                                             topk_explanations=10,
                                             concept_names=concept_names)
            end = time.time() - start
            results['model_accuracy'] = model_results[0]['test_acc']
            results['extraction_time'] = end
            results['tau'] = tau
            results['lambda'] = l1

            results_list.append(results)

            results_df = pd.DataFrame(results_list)
            results_df.to_csv(
                os.path.join(base_dir,
                             f'results_aware_vdem_l_{l1}_tau_{tau}.csv'))
Ejemplo n.º 3
0
                      l1=0.0001,
                      temperature=0.7,
                      lr=0.01,
                      explainer_hidden=[10])

    start = time.time()
    trainer.fit(model, train_loader, val_loader)
    print(f"Concept mask: {model.model[0].concept_mask}")
    model.freeze()
    model_results = trainer.test(model, test_dataloaders=test_loader)
    for j in range(n_classes):
        n_used_concepts = sum(model.model[0].concept_mask[j] > 0.5)
        print(f"Extracted concepts: {n_used_concepts}")
    results, f = model.explain_class(val_loader,
                                     train_loader,
                                     test_loader,
                                     topk_explanations=50,
                                     concept_names=concept_names,
                                     verbose=True)
    end = time.time() - start
    results['model_accuracy'] = model_results[0]['test_acc']
    results['extraction_time'] = end

    results_list.append(results)
    extracted_concepts = []
    all_concepts = model.model[0].concept_mask[0] > 0.5
    common_concepts = model.model[0].concept_mask[0] > 0.5
    for j in range(n_classes):
        n_used_concepts = sum(model.model[0].concept_mask[j] > 0.5)
        print(f"Extracted concepts: {n_used_concepts}")
        print(f"Explanation: {f[j]['explanation']}")
        print(f"Explanation accuracy: {f[j]['explanation_accuracy']}")