Ejemplo n.º 1
0
    def __init__(self ,weights,model_name='mobile0.25',use_mlu=True,use_jit=False):
        super(mlu_face_det_inference,self).__init__()

        self.use_mlu = use_mlu
        self.use_jit = use_jit
        loading = False if use_mlu else True
        infer = RetinaFaceDet(model_type=model_name,model_path=weights,use_cpu=True,loading=loading)
        model = infer.net
        if use_mlu:
            print('==using mlu quantization model==')
            model = mlu_quantize.quantize_dynamic_mlu(model)
            checkpoint = torch.load(weights, map_location='cpu')
            model.load_state_dict(checkpoint, strict=False)
            model.eval()
            model = model.to(ct.mlu_device())
            if use_jit:
                print('==jit==')
                randinput = torch.rand(1,3,640,480)*255
                randinput = randinput.to(ct.mlu_device())
                traced_model = torch.jit.trace(model, randinput, check_trace=False)
                self.model = traced_model
            else:
                self.model = model
        else:
            print('==using pytorch model==')
            model.eval()
            self.model = model

        self.infer = infer
Ejemplo n.º 2
0
    def __init__(self ,weights,model_name='resnet101_irse_mx',use_mlu=True,use_jit=False):
        super(mlu_face_rec_inference,self).__init__()

        self.use_mlu = use_mlu
        self.use_jit = use_jit
        use_device = 'cpu'
        ckpt_fpath = None if use_mlu else weights
        infer = Inference(backbone_type=model_name,
                          ckpt_fpath=ckpt_fpath,
                          device=use_device)
        model = infer.model
        if use_mlu:
            print('==using mlu quantization model==')
            model = mlu_quantize.quantize_dynamic_mlu(model)
            checkpoint = torch.load(weights, map_location='cpu')
            model.load_state_dict(checkpoint, strict=False)
            model.eval()
            model = model.to(ct.mlu_device())
            if use_jit:
                print('==jit==')
                randinput = torch.rand(1,3,112,112)*255
                randinput = randinput.to(ct.mlu_device())
                traced_model = torch.jit.trace(model, randinput, check_trace=False)
                self.model = traced_model
            else:
                self.model = model
        else:
            print('==using pytorch model==')
            model.eval()
            self.model = model
Ejemplo n.º 3
0
    def execute(self,img_cv2):
        """
        :param img_cv2: img_cv2 = cv2.imread() or [cv2.imread(c) for c in image_list] 
        :return: unnormalized feature [N,512], N = len(img_cv2) if isinstance(img_cv2,list) else 1
        """
        if isinstance(img_cv2,list):
            data = [preprocess(c, mlu=self.use_mlu) for c in img_cv2]
            data = torch.cat(data, dim=0)
        else:
            data = preprocess(img_cv2,mlu=self.use_mlu)

        if self.use_mlu:
            data = data.to(ct.mlu_device())

        out = self.model(data)
        out = out.cpu().detach().numpy().reshape(-1, 512)
        return out
Ejemplo n.º 4
0
    def execute(self,img_cv2,dst_size=[480,640],threshold=0.8,topk=5000,keep_topk=750,nms_threshold=0.2):
        """
        :param dst_size: [width,height] all image will be scaled into that size for detection, but bbox will be returned in its original scale
        :param img_cv2: img_cv2 = cv2.imread() or [cv2.imread(c) for c in image_list] 
        :return: detss = list of np.array, [ np.array(n,15)]
                    where len(detss) = len(img_cv2) if isinstance(img_cv2,list) else 1
                          n = detected faces in each image
                          15 :[x0,y0,x1,y1,score,landmarkx0,landmarky0,...,]
        """
        if isinstance(img_cv2,list):
            data = [preprocess_retinaface(c, dst_size ,mlu=self.use_mlu) for c in img_cv2]
            ratio = [ c[1] for c in data ]
            data = [c[0] for c in data]
            data = torch.cat(data, dim=0)
        else:
            data = preprocess_retinaface(img_cv2,dst_size=dst_size,mlu=self.use_mlu)
            ratio = [data[1]]
            data = data[0]

        if self.use_mlu:
            data = data.to(ct.mlu_device())

        locs,confs,landmss = self.model(data)

        if self.use_mlu:
            locs = fetch_cpu_data(locs,use_half_input=False,to_numpy=False)
            confs = fetch_cpu_data(confs,use_half_input=False,to_numpy=False)
            landmss = fetch_cpu_data(landmss,use_half_input=False,to_numpy=False)

        net_output = [locs,confs,landmss]
        dets = self.infer.execute_batch_mlu(net_output=net_output, batch_shape=data.shape,
                                            threshold=threshold,topk=topk,keep_topk=keep_topk,
                                            nms_threshold=nms_threshold)

        assert len(dets) == len(ratio), 'Err len(dets) != len(ratio)'

        detss = []
        for n,det in enumerate(dets):
            det = det/ratio[n]
            det[:,4] = det[:,4]*ratio[n]
            detss.append(det)
        return detss
Ejemplo n.º 5
0
    K = min([len(image_list), args.batch_size])
    # image_list = random.sample(image_list,K)
    image_list = image_list[:K]
    print('sampled %d data' % len(image_list))

    input_img = [cv2.imread(c) for c in image_list]
    data = [preprocess(c, mlu=args.mlu) for c in input_img]
    print('len of data: %d' % len(data))
    #print('data:',data)
    data = torch.cat(data, dim=0)
    print('data shape =', data.shape)

    if args.mlu:
        if args.half_input:
            data = data.type(torch.HalfTensor)
        data = data.to(ct.mlu_device())

    # model = torchvision.models.resnet50()
    print('==pytorch==')
    use_device = 'cpu'
    backbone_type = args.model_name
    model_type = model_dict[args.model_name]['weights']
    model_pth = pj(model_dict[args.model_name]['path'], model_type)
    model_pth = os.path.abspath(model_pth)
    infer = Inference(backbone_type=backbone_type,
                      ckpt_fpath=model_pth,
                      device=use_device)
    print('==end==')

    if not args.mlu:
        model = infer.model
Ejemplo n.º 6
0
import torch
import torch_mlu.core.mlu_model as ct
ct.set_cnml_enabled(False)
ct.set_quantized_bitwidth(16)

mat1 = torch.randn([18, 80], dtype=torch.float).half()
mat2 = torch.randn([80, 18], dtype=torch.float).half()

# out_cpu = torch.matmul(mat1, mat2)
mat1 = mat1.to(ct.mlu_device())
mat2 = mat2.to(ct.mlu_device())
# out_mlu = torch.matmul(mat1.to(ct.mlu_device()), mat2.to(ct.mlu_device()))
mat1.mm(mat2)
Ejemplo n.º 7
0
                     default='cpu',
                     help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
 parser.add_argument('--jit', type=bool, help='fusion', default=False)
 parser.add_argument('--save',
                     type=bool,
                     default=False,
                     help='selection of save *.cambrcion')
 opt = parser.parse_args()
 # 获取yolov5网络文件
 net = yolo.get_empty_model(opt)
 quantized_net = torch_mlu.core.mlu_quantize.quantize_dynamic_mlu(net)
 state_dict = torch.load('yolov5s_int8.pt')
 quantized_net.load_state_dict(state_dict, strict=False)
 # 设置为推理模式
 quantized_net = quantized_net.eval().float()
 device = ct.mlu_device()
 quantized_net.to(ct.mlu_device())
 # 读取图片
 img_mat = cv2.imread('images/image.jpg')
 # 预处理
 img = letter_box(img_mat)
 print(img.shape)
 # 设置在线融合模式
 if opt.jit:
     if opt.save:
         ct.save_as_cambricon('yolov5s')
     torch.set_grad_enabled(False)
     ct.set_core_number(4)
     trace_input = torch.randn(1, 3, 640, 640, dtype=torch.float)
     trace_input = trace_input.to(ct.mlu_device())
     quantized_net = torch.jit.trace(quantized_net,