Ejemplo n.º 1
0
def mm(indexA, valueA, indexB, valueB, m, k, n):
    assert valueA.dtype == valueB.dtype

    if indexA.is_cuda:
        return torch_sparse.spspmm_cuda.spspmm(indexA, valueA, indexB, valueB,
                                               m, k, n)

    A = to_scipy(indexA, valueA, m, k)
    B = to_scipy(indexB, valueB, k, n)
    C = A.dot(B).tocoo().tocsr().tocoo()  # Force coalesce.
    indexC, valueC = from_scipy(C)
    return indexC, valueC
Ejemplo n.º 2
0
def test_convert_scipy():
    index = torch.tensor([[0, 0, 1, 2, 2], [0, 2, 1, 0, 1]])
    value = torch.Tensor([1, 2, 4, 1, 3])
    N = 3

    out = from_scipy(to_scipy(index, value, N, N))
    assert out[0].tolist() == index.tolist()
    assert out[1].tolist() == value.tolist()
Ejemplo n.º 3
0
def transpose(index, value, m, n):
    """Transposes dimensions 0 and 1 of a sparse tensor.

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of sparse matrix.
        n (int): The second dimension of sparse matrix.

    :rtype: (:class:`LongTensor`, :class:`Tensor`)
    """

    if value.dim() == 1 and not value.is_cuda:
        mat = to_scipy(index, value, m, n).tocsc()
        (col, row), value = from_scipy(mat)
        index = torch.stack([row, col], dim=0)
        return index, value

    row, col = index
    index = torch.stack([col, row], dim=0)
    index, value = coalesce(index, value, n, m)
    return index, value
Ejemplo n.º 4
0
def transpose(index, value, m, n, coalesced=True):
    """Transposes dimensions 0 and 1 of a sparse tensor.

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        coalesced (bool, optional): If set to :obj:`False`, will not coalesce
            the output. (default: :obj:`True`)
    :rtype: (:class:`LongTensor`, :class:`Tensor`)
    """

    if value.dim() == 1 and not value.is_cuda:
        mat = to_scipy(index, value, m, n).tocsc()
        (col, row), value = from_scipy(mat)
        index = torch.stack([row, col], dim=0)
        return index, value

    row, col = index
    index = torch.stack([col, row], dim=0)
    if coalesced:
        index, value = coalesce(index, value, n, m)
    return index, value
Ejemplo n.º 5
0
def masked_distance(graph):
    sp = torch_sparse.to_scipy(graph.edge_index, graph.edge_attr[:, 0], graph.num_nodes, graph.num_nodes)
    dense = sp.todense()
    masked = np.ma.masked_equal(dense, value=0)
    return masked
Ejemplo n.º 6
0
        }, f"CASP{casp_ed}/processed/{target_id}.pth")

# %%
# ! ls CASP*/processed/*.pth | wc -l
# ! du -hsc CASP*/processed

# %%
sample = torch.load('CASP13/processed/T0980s2.pth')
fig, axes = plt.subplots(1, 3, figsize=(5*3, 4))

def masked_distance(graph):
    sp = torch_sparse.to_scipy(graph.edge_index, graph.edge_attr[:, 0], graph.num_nodes, graph.num_nodes)
    dense = sp.todense()
    masked = np.ma.masked_equal(dense, value=0)
    return masked

for ax, graph in zip(axes.flat, sample['graphs']):
    print(graph)
    dist = torch_sparse.to_scipy(graph.edge_index, graph.edge_attr[:, 0], graph.num_nodes, graph.num_nodes).todense()
    img = ax.pcolormesh(
        np.where(dist>0, dist, np.nan),
        vmin=0,
        vmax=dist.max(),
        cmap="BuGn_r",
    )
    cbar = fig.colorbar(img, ax=ax)
    ax.set_aspect('equal')
fig.tight_layout()
display(fig)
plt.close(fig)
Ejemplo n.º 7
0
import torch
from torch_sparse import to_scipy, from_scipy, coalesce


def transpose(index, value, m, nm coalesce=True):
    """Transposes dimensions 0 and 1 of a sparse tensor.

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        coalesce (bool, optional): To return coalesced index and value or not (default: :obj:`True`) 
    :rtype: (:class:`LongTensor`, :class:`Tensor`)
    """

    if value.dim() == 1 and not value.is_cuda:
        mat = to_scipy(index, value, m, n).tocsc()
        (col, row), value = from_scipy(mat)
        index = torch.stack([row, col], dim=0)
        return index, value

    row, col = index
    index = torch.stack([col, row], dim=0)
    if coalesce:
        index, value = coalesce(index, value, n, m)
    return index, value