Ejemplo n.º 1
0
Archivo: train.py Proyecto: a53769/Vnet
def inference(args, loader, model, transforms):
    src = args.inference
    dst = args.save

    model.eval()
    nvols = reduce(operator.mul, target_split, 1)
    # assume single GPU / batch size 1
    for data in loader:
        data, series, origin, spacing = data[0]
        shape = data.size()
        # convert names to batch tensor
        if args.cuda:
            data.pin_memory()
            data = data.cuda()
        data = Variable(data, volatile=True)
        output = model(data)
        _, output = output.max(1)
        output = output.view(shape)
        output = output.cpu()
        # merge subvolumes and save
        results = output.chunk(nvols)
        results = map(
            lambda var: torch.squeeze(var.data).numpy().astype(np.int16),
            results)
        volume = utils.merge_image([*results], target_split)
        print("save {}".format(series))
        utils.save_updated_image(volume, os.path.join(dst, series + ".mhd"),
                                 origin, spacing)
Ejemplo n.º 2
0
def normalize_lung_CT(**kwargs):
    mean_values = []
    var_values = []
    MIN_BOUND = -1000
    MAX_BOUND = 400
    Z_MAX, Y_MAX, X_MAX = kwargs['Z_MAX'], kwargs['Y_MAX'], kwargs['X_MAX']
    vox_spacing = kwargs['vox_spacing']
    utils.init_dims3D(Z_MAX, Y_MAX, X_MAX, vox_spacing)
    luna_subset_path = kwargs['src']
    luna_save_path = kwargs['dst']
    file_list=glob(luna_subset_path + "/" + "*.mhd")
    img_spacing = (vox_spacing, vox_spacing, vox_spacing)

    for img_file in file_list:
        itk_img = sitk.ReadImage(img_file)
        (x_space, y_space, z_space) = itk_img.GetSpacing()
        spacing_old = (z_space, y_space, x_space)
        img_array = sitk.GetArrayFromImage(itk_img) # indexes are z,y,x (notice the ordering)
        img, mu, var = utils.resample_volume(img_array, spacing_old, img_spacing, bounds=(MIN_BOUND, MAX_BOUND))
        utils.save_updated_image(img, luna_save_path+os.path.basename(img_file), itk_img.GetOrigin(), img_spacing)
        mean_values.append(mu)
        var_values.append(var)
    dataset_mean = np.mean(mean_values)
    dataset_stddev = np.sqrt(np.mean(var_values))
    return (dataset_mean, dataset_stddev)
Ejemplo n.º 3
0
def inference(params, args, loader, model):
    src = params['ModelParams']['dirInfer']
    dst = params['ModelParams']['dirResult']

    model.eval()
    # assume single GPU / batch size 1
    for batch_idx, data in enumerate(loader):
        data, id = data
        id = id[0]
        itk_img = sitk.ReadImage(os.path.join(src, id))
        origin = np.array(list(reversed(itk_img.GetOrigin())))
        spacing = np.array(list(reversed(itk_img.GetSpacing())))

        # pdb.set_trace()
        _, _, z, y, x = data.shape  # need to subset shape of 3-d. by Chao.
        # convert names to batch tensor
        if args.cuda:
            data.pin_memory()
            data = data.cuda()
        with torch.no_grad():
            data = Variable(data)
        output = model(data)
        _, output = output.max(1)
        output = output.view((x, y, z))
        # pdb.set_trace()
        output = output.cpu()

        print("save {}".format(id))
        utils.save_updated_image(output,
                                 os.path.join(dst, id + "_predicted.mhd"),
                                 origin, spacing)
Ejemplo n.º 4
0
def normalize_lung_mask(**kwargs):
    Z_MAX, Y_MAX, X_MAX = kwargs['Z_MAX'], kwargs['Y_MAX'], kwargs['X_MAX']
    vox_spacing = kwargs['vox_spacing']
    utils.init_dims3D(Z_MAX, Y_MAX, X_MAX, vox_spacing)
    luna_seg_lungs_path = kwargs['src']
    luna_seg_lungs_save_path = kwargs['dst']
    file_list=glob(os.path.join(luna_seg_lungs_path, "*.mhd"))
    img_spacing = (vox_spacing, vox_spacing, vox_spacing)
    for img_file in file_list:
        itk_img = sitk.ReadImage(img_file)
        (x_space, y_space, z_space) = itk_img.GetSpacing()
        spacing_old = (z_space, y_space, x_space)
        img_array = sitk.GetArrayFromImage(itk_img) # indexes are z,y,x (notice the ordering)
        img, _, _ = utils.resample_volume(img_array, spacing_old, img_spacing)
        img[img < 1] = 0
        utils.save_updated_image(img, os.path.join(luna_seg_lungs_save_path, os.path.basename(img_file)),
                                 itk_img.GetOrigin(), img_spacing)