Ejemplo n.º 1
0
def test_blockpartition_short_sequence():
    with pytest.raises(ValueError):
        blockpartition.solve([], partitions=1)
    with pytest.raises(ValueError):
        blockpartition.solve([42], partitions=2)
Ejemplo n.º 2
0
def test_blockpartition_non_positive_partitions():
    with pytest.raises(ValueError):
        blockpartition.solve([42], partitions=0)
    with pytest.raises(ValueError):
        blockpartition.solve([42], partitions=-1)
Ejemplo n.º 3
0
def test_blockpartition_zeros():
    assert blockpartition.solve([0, 0], partitions=2) == [[0], [0]]
Ejemplo n.º 4
0
def test_blockpartition():
    assert blockpartition.solve([1, 2, 3, 4, 5, 6], partitions=2) == [[1, 2, 3, 4], [5, 6]]
Ejemplo n.º 5
0
def shard_module(
    module: nn.Sequential,
    input_sample: Union[Tensor, Sequence[Tensor]],
    devices: Sequence[device],
    num_chunks: int,
    using_min_num_gpus: bool = True,
) -> Tuple[Union[GPipe, nn.Sequential], List[device]]:
    """shard a sequential module based on the memory usage of the components,
    profiled with the input sample from the argument, to a list of GPUs,
    that are assumed to have the same memory capacity.

    :param module: PyTorch sequential module
    :type module: nn.Sequential
    :param input_sample: batched input sample of one or more tensors used to
    profile the memory usage of each components in the sequential module
    :type input_sample: Union[Tensor, Sequence[Tensor]]
    :param devices: a list of PyTorch devices available
    :type devices: Sequence[device]
    :param num_chunks: number of chunks for GPipe sharded module; more
    chunks = better GPU utilization - more parallelization overhead
    :type num_chunks: int
    :param using_min_num_gpus: option for using minimum number of GPUs; if
    set to True, the function will select only the first few GPUs that are
    necessary for the whole module, instead of using all of the GPUs
    :type using_min_num_gpus: bool
    :return: a tuple made of a module and the list of used GPUs; if the
    module is sharded into a GPipe module, then the list would contain at
    least 2 GPUs; otherwise the module will be imported to the only
    computation device (GPUs or CPU) and returned
    :rtype: Tuple[Union[GPipe, nn.Sequential], List[device]]
    """

    # if more than 1 devices is necessary for the run ...
    # gpipe model on 1 gpu is much slower compared to ordinary model
    if len(devices) > 1:

        # get the sizes by layer in the sequential model
        # merely an rough estimation with a forward batch without optimizer
        _module_layer_sizes_in_byte: List[int] = profile_sequential_module(
            module=module,
            input=input_sample,
            chunks=1,
            param_scale=5.0,
            device=devices[0],
        )

        # scale the sizes by 2 (forward and backward) to play it safe
        _module_layer_sizes_in_byte = \
            [__m * 2 for __m in _module_layer_sizes_in_byte]

        # get the minimal necessary number of devices
        _num_devices: int = 0
        _module_size_in_byte: int = sum(_module_layer_sizes_in_byte)
        _gpu_sizes_in_byte: List[int] = [
            torch.cuda.get_device_properties(__d).total_memory
            for __d in devices
        ]

        for __n in range(1, len(devices) + 1):
            if sum(_gpu_sizes_in_byte[:__n]) > _module_size_in_byte:
                _num_devices = __n
                break

        if _num_devices == 0:
            _warning_msg = \
                f'PyTorch module with the estimated size of ' \
                f'{_module_size_in_byte / (1024**3):.1f} Gb exceeds the ' \
                f'combined memory capacity of all computation devices ' \
                f'({devices}). Proceeding with caution ...'
            _LOGGER.warning(_warning_msg)
        elif _num_devices < len(devices) and using_min_num_gpus:
            _warning_msg = \
                f'Using only {_num_devices} device(s) (' \
                f'{devices[:_num_devices]}) out of {len(devices)} ' \
                f'for the current trial.'
            _LOGGER.warning(_warning_msg)
            devices = devices[:_num_devices]
        else:
            # using all the available devices ...
            pass

        # cast the model to gpipe if necessary (too big for a single GPU)
        if len(devices) > 1:
            _balance = [
                len(__b) for __b in solve(
                    _module_layer_sizes_in_byte,
                    partitions=len(devices),
                )
            ]
            # since we are not actually chunking the batches ...
            module = GPipe(
                module=module,
                balance=_balance,
                devices=devices,
                chunks=num_chunks,  # subject to change
                checkpoint='never',
            )
        else:
            # if the model can fit into a single GPU
            module = module.to(devices[0])
    else:
        # if the number of available devices is 1
        module = module.to(devices[0])

    return module, devices
Ejemplo n.º 6
0
def balance_cost(cost: List[int], partitions: int) -> List[int]:
    partitioned = blockpartition.solve(cost, partitions)
    return [len(p) for p in partitioned]