Ejemplo n.º 1
0
 def test_no_labelmap(self):
     im = tio.ScalarImage(tensor=torch.rand(1, 1, 1, 1))
     subject = tio.Subject(image=im, no_label=im)
     sampler = tio.LabelSampler(1)
     with self.assertRaises(RuntimeError):
         next(sampler(subject))
Ejemplo n.º 2
0
 def test_pil_2(self):
     with self.assertRaises(RuntimeError):
         tio.ScalarImage(tensor=torch.rand(2, 2, 3, 1)).as_pil()
Ejemplo n.º 3
0
 def assert_shape(shape_in, shape_out):
     np.save(path, np.random.rand(*shape_in))
     image = tio.ScalarImage(path, reader=numpy_reader)
     assert image.shape == shape_out
Ejemplo n.º 4
0
 def test_with_a_list_of_images_with_different_shapes(self):
     path1 = self.get_image_path('path1', shape=(5, 5, 5))
     path2 = self.get_image_path('path2', shape=(7, 5, 5))
     image = tio.ScalarImage(path=[path1, path2])
     with self.assertRaises(RuntimeError):
         image.load()
Ejemplo n.º 5
0
 def test_data_type_uint32_array(self):
     tensor = np.random.rand(1, 3, 3, 3).astype(np.uint32)
     image = tio.ScalarImage(tensor=tensor)
     self.assertEqual(image.data.dtype, torch.int64)
Ejemplo n.º 6
0
def test():

    parser = argparse.ArgumentParser(
        description='PyTorch Medical Segmentation Testing')
    parser = parse_training_args(parser)
    args, _ = parser.parse_known_args()

    args = parser.parse_args()

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.enabled = args.cudnn_enabled
    torch.backends.cudnn.benchmark = args.cudnn_benchmark

    from data_function import MedData_test

    os.makedirs(output_dir_test, exist_ok=True)

    if hp.mode == '2d':
        from models.two_d.unet import Unet
        model = Unet(in_channels=hp.in_class, classes=hp.out_class)

        # from models.two_d.miniseg import MiniSeg
        # model = MiniSeg(in_input=hp.in_class, classes=hp.out_class)

        # from models.two_d.fcn import FCN32s as fcn
        # model = fcn(in_class =hp.in_class,n_class=hp.out_class)

        # from models.two_d.segnet import SegNet
        # model = SegNet(input_nbr=hp.in_class,label_nbr=hp.out_class)

        # from models.two_d.deeplab import DeepLabV3
        # model = DeepLabV3(in_class=hp.in_class,class_num=hp.out_class)

        # from models.two_d.unetpp import ResNet34UnetPlus
        # model = ResNet34UnetPlus(num_channels=hp.in_class,num_class=hp.out_class)

        # from models.two_d.pspnet import PSPNet
        # model = PSPNet(in_class=hp.in_class,n_classes=hp.out_class)

    elif hp.mode == '3d':
        from models.three_d.unet3d import UNet
        model = UNet(in_channels=hp.in_class,
                     n_classes=hp.out_class,
                     base_n_filter=2)

        #from models.three_d.fcn3d import FCN_Net
        #model = FCN_Net(in_channels =hp.in_class,n_class =hp.out_class)

        #from models.three_d.highresnet import HighRes3DNet
        #model = HighRes3DNet(in_channels=hp.in_class,out_channels=hp.out_class)

        #from models.three_d.densenet3d import SkipDenseNet3D
        #model = SkipDenseNet3D(in_channels=hp.in_class, classes=hp.out_class)

        # from models.three_d.densevoxelnet3d import DenseVoxelNet
        # model = DenseVoxelNet(in_channels=hp.in_class, classes=hp.out_class)

        #from models.three_d.vnet3d import VNet
        #model = VNet(in_channels=hp.in_class, classes=hp.out_class)

    model = torch.nn.DataParallel(model,
                                  device_ids=devicess,
                                  output_device=[1])

    print("load model:", args.ckpt)
    print(os.path.join(args.output_dir, args.latest_checkpoint_file))
    ckpt = torch.load(os.path.join(args.output_dir,
                                   args.latest_checkpoint_file),
                      map_location=lambda storage, loc: storage)

    model.load_state_dict(ckpt["model"])

    model.cuda()

    test_dataset = MedData_test(source_test_dir, label_test_dir)
    znorm = ZNormalization()

    if hp.mode == '3d':
        patch_overlap = 4, 4, 4
        patch_size = hp.patch_size, hp.patch_size, hp.patch_size
    elif hp.mode == '2d':
        patch_overlap = 4, 4, 0
        patch_size = hp.patch_size, hp.patch_size, 1

    for i, subj in enumerate(test_dataset.subjects):
        subj = znorm(subj)
        grid_sampler = torchio.inference.GridSampler(
            subj,
            patch_size,
            patch_overlap,
        )

        patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=16)
        aggregator = torchio.inference.GridAggregator(grid_sampler)
        aggregator_1 = torchio.inference.GridAggregator(grid_sampler)
        model.eval()
        with torch.no_grad():
            for patches_batch in tqdm(patch_loader):

                input_tensor = patches_batch['source'][torchio.DATA].to(device)
                locations = patches_batch[torchio.LOCATION]

                if hp.mode == '2d':
                    input_tensor = input_tensor.squeeze(4)
                outputs = model(input_tensor)

                if hp.mode == '2d':
                    outputs = outputs.unsqueeze(4)
                logits = torch.sigmoid(outputs)

                labels = logits.clone()
                labels[labels > 0.5] = 1
                labels[labels <= 0.5] = 0

                aggregator.add_batch(logits, locations)
                aggregator_1.add_batch(labels, locations)
        output_tensor = aggregator.get_output_tensor()
        output_tensor_1 = aggregator_1.get_output_tensor()

        affine = subj['source']['affine']
        if (hp.in_class == 1) and (hp.out_class == 1):
            label_image = torchio.ScalarImage(tensor=output_tensor.numpy(),
                                              affine=affine)
            label_image.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_float.mhd"))

            output_image = torchio.ScalarImage(tensor=output_tensor_1.numpy(),
                                               affine=affine)
            output_image.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_int.mhd"))
        else:
            output_tensor = output_tensor.unsqueeze(1)
            output_tensor_1 = output_tensor_1.unsqueeze(1)

            output_image_artery_float = torchio.ScalarImage(
                tensor=output_tensor[0].numpy(), affine=affine)
            output_image_artery_float.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_float_artery.mhd"))

            output_image_artery_int = torchio.ScalarImage(
                tensor=output_tensor_1[0].numpy(), affine=affine)
            output_image_artery_int.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_int_artery.mhd"))

            output_image_lung_float = torchio.ScalarImage(
                tensor=output_tensor[1].numpy(), affine=affine)
            output_image_lung_float.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_float_lung.mhd"))

            output_image_lung_int = torchio.ScalarImage(
                tensor=output_tensor_1[1].numpy(), affine=affine)
            output_image_lung_int.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_int_lung.mhd"))

            output_image_trachea_float = torchio.ScalarImage(
                tensor=output_tensor[2].numpy(), affine=affine)
            output_image_trachea_float.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_float_trachea.mhd"))

            output_image_trachea_int = torchio.ScalarImage(
                tensor=output_tensor_1[2].numpy(), affine=affine)
            output_image_trachea_int.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_int_trachea.mhd"))

            output_image_vein_float = torchio.ScalarImage(
                tensor=output_tensor[3].numpy(), affine=affine)
            output_image_vein_float.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_float_veiny.mhd"))

            output_image_vein_int = torchio.ScalarImage(
                tensor=output_tensor_1[3].numpy(), affine=affine)
            output_image_vein_int.save(
                os.path.join(output_dir_test,
                             str(i) + "_result_int_vein.mhd"))
Ejemplo n.º 7
0
    def __init__(self, images_dir, labels_dir):

        if hp.mode == '3d':
            patch_size = hp.patch_size
        elif hp.mode == '2d':
            patch_size = (hp.patch_size, hp.patch_size, 1)
        else:
            raise Exception('no such kind of mode!')

        queue_length = 5
        samples_per_volume = 5

        self.subjects = []

        if (hp.in_class == 1) and (hp.out_class == 1):

            images_dir = Path(images_dir)
            self.image_paths = sorted(images_dir.glob(hp.fold_arch))
            labels_dir = Path(labels_dir)
            self.label_paths = sorted(labels_dir.glob(hp.fold_arch))

            for (image_path, label_path) in zip(self.image_paths,
                                                self.label_paths):
                subject = tio.Subject(
                    source=tio.ScalarImage(image_path),
                    label=tio.LabelMap(label_path),
                )
                self.subjects.append(subject)
        else:
            images_dir = Path(images_dir)
            self.image_paths = sorted(images_dir.glob(hp.fold_arch))

            artery_labels_dir = Path(labels_dir + '/artery')
            self.artery_label_paths = sorted(
                artery_labels_dir.glob(hp.fold_arch))

            lung_labels_dir = Path(labels_dir + '/lung')
            self.lung_label_paths = sorted(lung_labels_dir.glob(hp.fold_arch))

            trachea_labels_dir = Path(labels_dir + '/trachea')
            self.trachea_label_paths = sorted(
                trachea_labels_dir.glob(hp.fold_arch))

            vein_labels_dir = Path(labels_dir + '/vein')
            self.vein_label_paths = sorted(vein_labels_dir.glob(hp.fold_arch))

            for (image_path, artery_label_path, lung_label_path,
                 trachea_label_path, vein_label_path) in zip(
                     self.image_paths, self.artery_label_paths,
                     self.lung_label_paths, self.trachea_label_paths,
                     self.vein_label_paths):
                subject = tio.Subject(
                    source=tio.ScalarImage(image_path),
                    atery=tio.LabelMap(artery_label_path),
                    lung=tio.LabelMap(lung_label_path),
                    trachea=tio.LabelMap(trachea_label_path),
                    vein=tio.LabelMap(vein_label_path),
                )
                self.subjects.append(subject)

        self.transforms = self.transform()

        self.training_set = tio.SubjectsDataset(self.subjects,
                                                transform=self.transforms)

        self.queue_dataset = Queue(
            self.training_set,
            queue_length,
            samples_per_volume,
            UniformSampler(patch_size),
        )
Ejemplo n.º 8
0
 def test_wrong_scalar_image_type(self):
     data = torch.ones((1, 10, 10, 10))
     with self.assertRaises(ValueError):
         tio.ScalarImage(tensor=data, type=tio.LABEL)
Ejemplo n.º 9
0
 def test_no_input(self):
     with self.assertRaises(ValueError):
         tio.ScalarImage()
Ejemplo n.º 10
0
 def test_wrong_path_type(self):
     with self.assertRaises(TypeError):
         tio.ScalarImage(5)
Ejemplo n.º 11
0
 def test_wrong_affine(self):
     with self.assertRaises(TypeError):
         tio.ScalarImage(5, affine=1)
Ejemplo n.º 12
0
 def test_wrong_path_value(self):
     with self.assertRaises(RuntimeError):
         tio.ScalarImage('~&./@#"!?X7=+')
Ejemplo n.º 13
0
def createTIOSubDS(
    root_gt: Union[str, Sequence[str]],
    root_input: Optional[Union[str, Sequence[str]]] = None,
    filename_filter: Optional[Union[str, Sequence[str]]] = None,
    split_csv: str = "",
    split: str = "",
    data_mode: Literal['NIFTI', 'DICOM'] = "NIFTI",
    isKSpace: bool = False,
    isGTNonImg: bool = False,
    init_transforms: Optional[Callable] = None,
    aug_transforms: Optional[Callable] = None,
    transforms: Optional[Callable] = None,
) -> tio.SubjectsDataset:

    if type(root_gt) is not list:
        root_gt = [root_gt]

    if bool(root_input) and type(root_input) is not list:
        root_input = [root_input]

    files = []
    for gt in root_gt:
        if data_mode == "NIFTI":
            files += glob(gt+"/**/*.nii", recursive=True) + glob(gt+"/**/*.nii.gz", recursive=True) +\
                glob(gt+"/**/*.img", recursive=True) + \
                glob(gt+"/**/*.img.gz", recursive=True)
        else:
            # TODO: DICOM read
            sys.exit("DICOM read not implemented inside createTIOSubDS")

    if bool(filename_filter):
        if type(filename_filter) is str:
            filename_filter = [filename_filter]
        files = [
            f for f in files if any(filt in f for filt in filename_filter)
        ]

    if bool(split_csv):
        df = pd.read_csv(split_csv)[split]
        df.dropna(inplace=True)
        df = list(df)
        files = [f for f in files if any(d in f for d in df)]

    subjects = []
    filenames = []

    print("Preparing dataset .....")
    for file in tqdm(files):
        filenames.append(os.path.basename(file))
        if bool(root_input):
            gt_id = [i for i, g in enumerate(root_gt) if g in file][0]
            file_in = file.replace(root_gt[gt_id], root_input[gt_id])
            if not os.path.isfile(file_in):
                if data_mode == "NIFTI" and ".gz" not in file_in:
                    file_in += ".gz"
                    if not os.path.isfile(file_in):
                        continue
                else:
                    continue
            subjects.append(
                tio.Subject(inp=tio.ScalarImage(file_in),
                            gt=tio.LabelMap(file)
                            if isGTNonImg else tio.ScalarImage(file),
                            filename=os.path.basename(file),
                            processed=False))
        else:
            subjects.append(
                tio.Subject(gt=tio.ScalarImage(file),
                            filename=os.path.basename(file),
                            processed=False))

    if isKSpace:
        # TODO: Image to kSpace transform
        sys.exit(
            "Image to kSpace transform not implemented inside createTIOSubDS")

    if init_transforms is not None:
        aug_transforms = init_transforms if aug_transforms is None else (
            init_transforms + aug_transforms)

    if aug_transforms is not None:
        transforms = aug_transforms if transforms is None else (
            aug_transforms + transforms)

    if transforms is not None:
        transforms = tio.Compose(transforms)

    subjects_dataset = tio.SubjectsDataset(subjects, transform=transforms)
    return subjects_dataset, filenames
Ejemplo n.º 14
0
transformed = dataset[0]
print('Applied transforms:')  # noqa: T001
pprint.pprint(transformed.history)  # noqa: T003
print('\nComposed transform to reproduce history:')  # noqa: T001
print(transformed.get_composed_history())  # noqa: T001
print('\nComposed transform to invert applied transforms when possible:'
      )  # noqa: T001, E501
print(transformed.get_inverse_transform(ignore_intensity=False))  # noqa: T001

loader = torch.utils.data.DataLoader(
    dataset,
    batch_size=batch_size,
    collate_fn=tio.utils.history_collate,
)

batch = tio.utils.get_first_item(loader)
print('\nTransforms applied to subjects in batch:')  # noqa: T001
pprint.pprint(batch[tio.HISTORY])  # noqa: T003

for i in range(batch_size):
    tensor = batch['t1'][tio.DATA][i]
    affine = batch['t1'][tio.AFFINE][i]
    image = tio.ScalarImage(tensor=tensor, affine=affine)
    image.plot(show=False)
    history = batch[tio.HISTORY][i]
    title = ', '.join(t.name for t in history)
    plt.suptitle(title)
    plt.tight_layout()

plt.show()
Ejemplo n.º 15
0
def swap_image(filename):
    """ Image manipulation method - swap patches of image for context restoration """
    image = tio.ScalarImage(filename)
    swap = tio.RandomSwap()
    swapped = swap(image)
    return swapped
Ejemplo n.º 16
0
 def test_bad_key(self):
     with self.assertRaises(ValueError):
         tio.ScalarImage(path='', data=5)
Ejemplo n.º 17
0
def train():

    parser = argparse.ArgumentParser(
        description='PyTorch Medical Segmentation Training')
    parser = parse_training_args(parser)
    args, _ = parser.parse_known_args()

    args = parser.parse_args()

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.enabled = args.cudnn_enabled
    torch.backends.cudnn.benchmark = args.cudnn_benchmark

    from data_function import MedData_train
    os.makedirs(args.output_dir, exist_ok=True)

    if hp.mode == '2d':
        from models.two_d.unet import Unet
        model = Unet(in_channels=hp.in_class, classes=hp.out_class)

        # from models.two_d.miniseg import MiniSeg
        # model = MiniSeg(in_input=hp.in_class, classes=hp.out_class)

        # from models.two_d.fcn import FCN32s as fcn
        # model = fcn(in_class =hp.in_class,n_class=hp.out_class)

        # from models.two_d.segnet import SegNet
        # model = SegNet(input_nbr=hp.in_class,label_nbr=hp.out_class)

        # from models.two_d.deeplab import DeepLabV3
        # model = DeepLabV3(in_class=hp.in_class,class_num=hp.out_class)

        # from models.two_d.unetpp import ResNet34UnetPlus
        # model = ResNet34UnetPlus(num_channels=hp.in_class,num_class=hp.out_class)

        # from models.two_d.pspnet import PSPNet
        # model = PSPNet(in_class=hp.in_class,n_classes=hp.out_class)

    elif hp.mode == '3d':

        from models.three_d.unet3d import UNet3D
        model = UNet3D(in_channels=hp.in_class,
                       out_channels=hp.out_class,
                       init_features=32)

        # from models.three_d.residual_unet3d import UNet
        # model = UNet(in_channels=hp.in_class, n_classes=hp.out_class, base_n_filter=2)

        #from models.three_d.fcn3d import FCN_Net
        #model = FCN_Net(in_channels =hp.in_class,n_class =hp.out_class)

        #from models.three_d.highresnet import HighRes3DNet
        #model = HighRes3DNet(in_channels=hp.in_class,out_channels=hp.out_class)

        #from models.three_d.densenet3d import SkipDenseNet3D
        #model = SkipDenseNet3D(in_channels=hp.in_class, classes=hp.out_class)

        # from models.three_d.densevoxelnet3d import DenseVoxelNet
        # model = DenseVoxelNet(in_channels=hp.in_class, classes=hp.out_class)

        #from models.three_d.vnet3d import VNet
        #model = VNet(in_channels=hp.in_class, classes=hp.out_class)

    model = torch.nn.DataParallel(model,
                                  device_ids=devicess,
                                  output_device=[1])
    optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr)

    # scheduler = ReduceLROnPlateau(optimizer, 'min',factor=0.5, patience=20, verbose=True)
    scheduler = StepLR(optimizer, step_size=30, gamma=0.8)
    # scheduler = CosineAnnealingLR(optimizer, T_max=50, eta_min=5e-6)

    if args.ckpt is not None:
        print("load model:", args.ckpt)
        print(os.path.join(args.output_dir, args.latest_checkpoint_file))
        ckpt = torch.load(os.path.join(args.output_dir,
                                       args.latest_checkpoint_file),
                          map_location=lambda storage, loc: storage)

        model.load_state_dict(ckpt["model"])
        optimizer.load_state_dict(ckpt["optim"])

        for state in optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.cuda()

        # scheduler.load_state_dict(ckpt["scheduler"])
        elapsed_epochs = ckpt["epoch"]
    else:
        elapsed_epochs = 0

    model.cuda()

    from loss_function import Binary_Loss, DiceLoss
    criterion = Binary_Loss().cuda()

    writer = SummaryWriter(args.output_dir)

    train_dataset = MedData_train(source_train_dir, label_train_dir)
    train_loader = DataLoader(train_dataset.queue_dataset,
                              batch_size=args.batch,
                              shuffle=True,
                              pin_memory=True,
                              drop_last=True)

    model.train()

    epochs = args.epochs - elapsed_epochs
    iteration = elapsed_epochs * len(train_loader)

    for epoch in range(1, epochs + 1):
        print("epoch:" + str(epoch))
        epoch += elapsed_epochs

        train_epoch_avg_loss = 0.0
        num_iters = 0

        for i, batch in enumerate(train_loader):

            if hp.debug:
                if i >= 1:
                    break

            print(f"Batch: {i}/{len(train_loader)} epoch {epoch}")

            optimizer.zero_grad()

            if (hp.in_class == 1) and (hp.out_class == 1):
                x = batch['source']['data']
                y = batch['label']['data']

                x = x.type(torch.FloatTensor).cuda()
                y = y.type(torch.FloatTensor).cuda()

            else:
                x = batch['source']['data']
                y_atery = batch['atery']['data']
                y_lung = batch['lung']['data']
                y_trachea = batch['trachea']['data']
                y_vein = batch['atery']['data']

                x = x.type(torch.FloatTensor).cuda()

                y = torch.cat((y_atery, y_lung, y_trachea, y_vein), 1)
                y = y.type(torch.FloatTensor).cuda()

            if hp.mode == '2d':
                x = x.squeeze(4)
                y = y.squeeze(4)

                y = y / 255.

            # print(y.max())

            outputs = model(x)

            # for metrics
            logits = torch.sigmoid(outputs)
            labels = logits.clone()
            labels[labels > 0.5] = 1
            labels[labels <= 0.5] = 0

            loss = criterion(outputs, y)

            num_iters += 1
            loss.backward()

            optimizer.step()
            iteration += 1

            false_positive_rate, false_negtive_rate, dice = metric(
                y.cpu(), labels.cpu())
            ## log
            writer.add_scalar('Training/Loss', loss.item(), iteration)
            writer.add_scalar('Training/false_positive_rate',
                              false_positive_rate, iteration)
            writer.add_scalar('Training/false_negtive_rate',
                              false_negtive_rate, iteration)
            writer.add_scalar('Training/dice', dice, iteration)

            print("loss:" + str(loss.item()))
            print('lr:' + str(scheduler._last_lr[0]))

        scheduler.step()

        # Store latest checkpoint in each epoch
        torch.save(
            {
                "model": model.state_dict(),
                "optim": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "epoch": epoch,
            },
            os.path.join(args.output_dir, args.latest_checkpoint_file),
        )

        # Save checkpoint
        if epoch % args.epochs_per_checkpoint == 0:

            torch.save(
                {
                    "model": model.state_dict(),
                    "optim": optimizer.state_dict(),
                    "epoch": epoch,
                },
                os.path.join(args.output_dir, f"checkpoint_{epoch:04d}.pt"),
            )

            with torch.no_grad():
                if hp.mode == '2d':
                    x = x.unsqueeze(4)
                    y = y.unsqueeze(4)
                    outputs = outputs.unsqueeze(4)

                x = x[0].cpu().detach().numpy()
                y = y[0].cpu().detach().numpy()
                outputs = outputs[0].cpu().detach().numpy()
                affine = batch['source']['affine'][0].numpy()

                if (hp.in_class == 1) and (hp.out_class == 1):
                    source_image = torchio.ScalarImage(tensor=x, affine=affine)
                    source_image.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-source.mhd").format(epoch)))

                    label_image = torchio.ScalarImage(tensor=y, affine=affine)
                    label_image.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-gt.mhd").format(epoch)))

                    output_image = torchio.ScalarImage(tensor=outputs,
                                                       affine=affine)
                    output_image.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-predict.mhd").format(epoch)))
                else:
                    y = np.expand_dims(y, axis=1)
                    outputs = np.expand_dims(outputs, axis=1)

                    source_image = torchio.ScalarImage(tensor=x, affine=affine)
                    source_image.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-source.mhd").format(epoch)))

                    label_image_artery = torchio.ScalarImage(tensor=y[0],
                                                             affine=affine)
                    label_image_artery.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-gt_artery.mhd").format(epoch)))

                    output_image_artery = torchio.ScalarImage(
                        tensor=outputs[0], affine=affine)
                    output_image_artery.save(
                        os.path.join(
                            args.output_dir,
                            ("step-{}-predict_artery.mhd").format(epoch)))

                    label_image_lung = torchio.ScalarImage(tensor=y[1],
                                                           affine=affine)
                    label_image_lung.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-gt_lung.mhd").format(epoch)))

                    output_image_lung = torchio.ScalarImage(tensor=outputs[1],
                                                            affine=affine)
                    output_image_lung.save(
                        os.path.join(
                            args.output_dir,
                            ("step-{}-predict_lung.mhd").format(epoch)))

                    label_image_trachea = torchio.ScalarImage(tensor=y[2],
                                                              affine=affine)
                    label_image_trachea.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-gt_trachea.mhd").format(epoch)))

                    output_image_trachea = torchio.ScalarImage(
                        tensor=outputs[2], affine=affine)
                    output_image_trachea.save(
                        os.path.join(
                            args.output_dir,
                            ("step-{}-predict_trachea.mhd").format(epoch)))

                    label_image_vein = torchio.ScalarImage(tensor=y[3],
                                                           affine=affine)
                    label_image_vein.save(
                        os.path.join(args.output_dir,
                                     ("step-{}-gt_vein.mhd").format(epoch)))

                    output_image_vein = torchio.ScalarImage(tensor=outputs[3],
                                                            affine=affine)
                    output_image_vein.save(
                        os.path.join(
                            args.output_dir,
                            ("step-{}-predict_vein.mhd").format(epoch)))

    writer.close()
Ejemplo n.º 18
0
 def test_repr(self):
     subject = tio.Subject(t1=tio.ScalarImage(
         self.get_image_path('repr_test')), )
     assert 'shape' not in repr(subject['t1'])
     subject.load()
     assert 'shape' in repr(subject['t1'])
Ejemplo n.º 19
0
        if not args.output_probabilities:

            if args.remove_holes:
                out, hole_voxels_removed = remove_holes(out, hole_size=64)
                pbar.write(
                    f"\tFilled {hole_voxels_removed} voxels from detected holes."
                )

            out = torch.from_numpy(out).unsqueeze(0)
            out = out.int()
            image = tio.LabelMap(tensor=out)

        else:
            raise NotImplementedError
            image = tio.ScalarImage(tensor=probs)

        # inverse_transforms = subject.get_composed_history().inverse(warn=False)
        # image = inverse_transforms(image)

        orig_subject = dataset.subjects_map[
            subject["name"]]  # access subject without applying transformations

        # compare shapes ignoring the channel dimension
        if image.shape[1:] != orig_subject.shape[1:]:
            resample_transform = tio.Resample(orig_subject.get_images()[0])
            image = resample_transform(image)

        assert orig_subject.shape[1:] == image.shape[
            1:], "Segmentation shape and original image shape do not match"
Ejemplo n.º 20
0
 def test_bad_affine(self):
     with self.assertRaises(ValueError):
         tio.ScalarImage(tensor=torch.rand(1, 2, 3, 4), affine=np.eye(3))
Ejemplo n.º 21
0
def main(
    input_path,
    checkpoint_path,
    output_dir,
    landmarks_path,
    num_iterations,
    csv_path,
    batch_size,
    num_workers,
    gpu,
    threshold,
    augmentation,
    save_volumes,
    interpolation,
    std_noise,
):
    import torch
    import pandas as pd
    import numpy as np
    import torchio as tio
    from tqdm import tqdm

    import models

    device = torch.device(
        'cuda' if torch.cuda.is_available() and gpu else 'cpu')
    checkpoint = torch.load(checkpoint_path, map_location=device)
    model = models.get_unet().to(device)
    model.load_state_dict(checkpoint['model'])
    output_dir = Path(output_dir)
    model.eval()
    torch.set_grad_enabled(False)

    fps = get_paths(input_path)
    mean_dir = output_dir / 'mean'
    std_dir = output_dir / 'std'
    # entropy_dir = output_dir / 'entropy'
    mean_dir.mkdir(parents=True, exist_ok=True)
    std_dir.mkdir(parents=True, exist_ok=True)
    # entropy_dir.mkdir(parents=True, exist_ok=True)

    records = []
    progress = tqdm(fps, unit='subject')
    for fp in progress:
        subject_id = fp.name[:4]
        progress.set_description(subject_id)
        image = tio.ScalarImage(fp)
        subject = tio.Subject(
            image=image)  # key must be 'image' as in get_test_transform
        transform = get_transform(augmentation, landmarks_path)
        dataset = tio.SubjectsDataset(num_iterations * [subject],
                                      transform=transform)
        loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=batch_size,
            num_workers=num_workers,
            collate_fn=lambda x: x,
        )
        all_results = []
        for subjects_list_batch in tqdm(loader, leave=False, unit='batch'):
            inputs = torch.stack([
                subject.image.data for subject in subjects_list_batch
            ]).float().to(device)
            with torch.cuda.amp.autocast():
                segs = model(inputs).softmax(dim=1)[:, 1:].cpu()
            iterable = list(zip(subjects_list_batch, segs))
            for subject, seg in tqdm(iterable, leave=False, unit='subject'):
                subject.image.set_data(seg)
                inverse_transform = subject.get_inverse_transform(warn=False)
                inverse_transforms = inverse_transform.transforms
                first = inverse_transforms[0]
                if hasattr(first, 'image_interpolation'
                           ) and first.image_interpolation != 'linear':
                    first.image_interpolation = 'linear'  # force interp to be lin so probs stay in [0,1]
                subject_back = inverse_transform(subject)
                result = subject_back.image.data
                assert np.count_nonzero(
                    result.numpy() < 0) == 0, 'neg values found in result'
                if threshold:
                    result = (result >= 0.5).float()
                all_results.append(result)
        result = torch.stack(all_results)

        volumes = result.sum(dim=(-3, -2, -1)).numpy()
        mean_volumes = volumes.mean()
        std_volumes = volumes.std()
        volume_variation_coefficient = std_volumes / mean_volumes
        q1, q3 = np.percentile(volumes, (25, 75))
        quartile_coefficient_of_dispersion = (q3 - q1) / (q3 + q1)

        record = dict(
            Subject=subject_id,
            VolumeMean=mean_volumes,
            VolumeSTD=std_volumes,
            VVC=volume_variation_coefficient,
            Q1=q1,
            Q3=q3,
            QCD=quartile_coefficient_of_dispersion,
        )

        if save_volumes:
            for i, volume in enumerate(volumes):
                record[f'Volume_{i}'] = volume

        records.append(record)

        mean = result.mean(dim=0)
        std = result.std(dim=0)
        # entropy = utils.get_entropy(result)

        mean_image = tio.ScalarImage(tensor=mean, affine=image.affine)
        std_image = tio.ScalarImage(tensor=std, affine=image.affine)
        # entropy_image = tio.ScalarImage(tensor=entropy, affine=image.affine)

        mean_path = mean_dir / fp.name.replace('.nii', '_mean.nii')
        std_path = std_dir / fp.name.replace('.nii', '_std.nii')
        # entropy_path = entropy_dir / fp.name.replace('.nii', '_entropy.nii')

        mean_image.save(mean_path)
        std_image.save(std_path)
        # entropy_image.save(entropy_path)

        # So it's updated during execution
        df = pd.DataFrame.from_records(records)
        df.to_csv(csv_path)

    return 0
Ejemplo n.º 22
0
 def test_nans_tensor(self):
     tensor = np.random.rand(1, 2, 3, 4)
     tensor[0, 0, 0, 0] = np.nan
     with self.assertWarns(RuntimeWarning):
         image = tio.ScalarImage(tensor=tensor, check_nans=True)
     image.set_check_nans(False)
Ejemplo n.º 23
0
 def test_with_a_list_of_images_with_different_affines(self):
     path1 = self.get_image_path('path1', spacing=(1, 1, 1))
     path2 = self.get_image_path('path2', spacing=(1, 2, 1))
     image = tio.ScalarImage(path=[path1, path2])
     with self.assertWarns(RuntimeWarning):
         image.load()
Ejemplo n.º 24
0
 def test_with_list_of_missing_files(self):
     with self.assertRaises(FileNotFoundError):
         tio.ScalarImage(path=['nopath', 'error'])
Ejemplo n.º 25
0
 def test_save_image_with_data_type_boolean(self):
     tensor = np.random.rand(1, 3, 3, 3).astype(bool)
     image = tio.ScalarImage(tensor=tensor)
     image.save(self.dir / 'image.nii')
Ejemplo n.º 26
0
def create_train_and_test_data_loaders(df, count_train):
    images = []
    regression_targets = []
    sizes = {}
    artifact_column_indices = [
        df.columns.get_loc(c) + 1 for c in artifacts if c in df
    ]
    for row in df.itertuples():
        try:
            exists = row.exists
        except AttributeError:
            exists = True  # assume that it exists by default
        if exists:
            images.append(row.file_path)

            row_targets = [row.overall_qa_assessment]
            for i in range(len(artifacts)):
                artifact_value = row[artifact_column_indices[i]]
                converted_result = convert_bool_to_int(artifact_value)
                row_targets.append(converted_result)
            regression_targets.append(row_targets)

            try:
                size = row.dimensions
                if size not in sizes:
                    sizes[size] = 1
                else:
                    sizes[size] += 1
            except AttributeError:
                pass

    ground_truth = np.asarray(regression_targets)
    count_val = df.shape[0] - count_train
    train_files = [
        torchio.Subject({
            'img': torchio.ScalarImage(img),
            'info': info
        })
        for img, info in zip(images[:count_train], ground_truth[:count_train])
    ]
    val_files = [
        torchio.Subject({
            'img': torchio.ScalarImage(img),
            'info': info
        }) for img, info in zip(images[-count_val:], ground_truth[-count_val:])
    ]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # calculate class weights
    class_count = len(artifacts)
    count0 = [0] * class_count
    count1 = [0] * class_count
    for s in range(count_train):
        for i in range(class_count):
            if regression_targets[s][i + regression_count] == 0:
                count0[i] += 1
            elif regression_targets[s][i + regression_count] == 1:
                count1[i] += 1
            # else ignore the missing data

    weights_array = np.zeros(class_count)
    for i in range(class_count):
        weights_array[i] = count0[i] / (count0[i] + count1[i])
    logger.info(f'weights_array: {weights_array}')
    class_weights = torch.tensor(weights_array, dtype=torch.float).to(device)

    rescale = torchio.RescaleIntensity(out_min_max=(0, 1))
    ghosting = CustomGhosting(p=0.2, intensity=(0.2, 0.8))
    motion = CustomMotion(p=0.15,
                          degrees=5.0,
                          translation=5.0,
                          num_transforms=1)
    inhomogeneity = CustomBiasField(p=0.05)
    spike = CustomSpike(p=0.03, num_spikes=(1, 1))
    # gamma = CustomGamma(p=0.1)  # after quick experimentation: gamma does not appear to help
    noise = CustomNoise(p=0.05)

    transforms = torchio.Compose(
        [rescale, ghosting, motion, inhomogeneity, spike, noise])

    # create a training data loader
    train_ds = torchio.SubjectsDataset(train_files, transform=transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=1,
                              shuffle=True,
                              num_workers=4,
                              pin_memory=torch.cuda.is_available())

    # create a validation data loader
    val_ds = torchio.SubjectsDataset(val_files, transform=rescale)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())

    return train_loader, val_loader, class_weights, sizes
Ejemplo n.º 27
0
 def test_pil_3(self):
     tio.ScalarImage(tensor=torch.rand(3, 2, 3, 1)).as_pil()
Ejemplo n.º 28
0
def add_noise_to_image(filename):
    """ Image manipulation method - add noise """
    image = tio.ScalarImage(filename)
    noise = tio.RandomNoise()
    noised = noise(image)
    return noised
Ejemplo n.º 29
0
 def test_image_not_found(self):
     with self.assertRaises(FileNotFoundError):
         tio.ScalarImage('nopath')
Ejemplo n.º 30
0
                        recursive=True)
    all_t1s = glob.glob(data_path + '**/*desc-restore_space-T2w_T1w.nii.gz',
                        recursive=True)

    all_t1s = all_t1s[:max_subjects]
    subjects = []

    for t1_file in all_t1s:
        id_subject = t1_file.split('/')[6].split('_')[0:2]
        id_subject = id_subject[0] + '_' + id_subject[1]

        t2_file = [s for s in all_t2s if id_subject in s][0]
        seg_file = [s for s in all_seg if id_subject in s][0]

        subject = tio.Subject(
            t1=tio.ScalarImage(t1_file),
            t2=tio.ScalarImage(t2_file),
            label=tio.LabelMap(seg_file),
        )
        subjects.append(subject)

    dataset = tio.SubjectsDataset(subjects)
    print('Dataset size:', len(dataset), 'subjects')

    #%%
    normalization = tio.ZNormalization(masking_method='label')
    onehot = tio.OneHot()

    spatial = tio.RandomAffine(scales=0.1, degrees=10, translation=0, p=0.75)

    bias = tio.RandomBiasField(coefficients=0.5, p=0.3)