Ejemplo n.º 1
0
def r2plus1d_152(pretrained=False, progress=False, **kwargs):
    return _video_resnet('r2plus1d_152',
                         False,
                         False,
                         block=Bottleneck,
                         conv_makers=[Conv2Plus1D] * 4,
                         layers=[3, 8, 36, 3],
                         stem=R2Plus1dStem,
                         **kwargs)
Ejemplo n.º 2
0
def r2plus1d_34(pretrained=False, progress=False, **kwargs):
    return _video_resnet('r2plus1d_34',
                         False,
                         False,
                         block=BasicBlock,
                         conv_makers=[Conv2Plus1D] * 4,
                         layers=[3, 4, 6, 3],
                         stem=R2Plus1dStem,
                         **kwargs)
Ejemplo n.º 3
0
def r2plus1d_18(pretrained=False, progress=False, **kwargs):
    """Constructs a ResNet-18 model.
    """
    return _video_resnet('r2plus1d_18',
                         False,
                         False,
                         block=BasicBlock,
                         conv_makers=[Conv2Plus1D] * 4,
                         layers=[2, 2, 2, 2],
                         stem=R2Plus1dStem,
                         **kwargs)
Ejemplo n.º 4
0
def ip_csn_50(pretrained=False, progress=False, **kwargs):
    model = _video_resnet("ip_csn_50",
                          False,
                          False,
                          block=Bottleneck,
                          conv_makers=[IPConv3DDepthwise] * 4,
                          layers=[3, 8, 6, 3],
                          stem=BasicStem_Pool,
                          **kwargs)
    for m in model.modules():
        if isinstance(m, nn.BatchNorm3d):
            m.eps = 1e-3
    return model
Ejemplo n.º 5
0
def r2plus1d_152(pretrained=False, progress=False, **kwargs):
    model = _video_resnet("r2plus1d_152",
                          False,
                          False,
                          block=Bottleneck,
                          conv_makers=[Conv2Plus1D] * 4,
                          layers=[3, 8, 36, 3],
                          stem=R2Plus1dStem,
                          **kwargs)
    for m in model.modules():
        if isinstance(m, nn.BatchNorm3d):
            m.eps = 1e-3
    return model
Ejemplo n.º 6
0
def r2plus1d_18(pretrained=False, progress=False, **kwargs):
    model = _video_resnet("r2plus1d_18",
                          False,
                          False,
                          block=BasicBlock,
                          conv_makers=[Conv2Plus1D] * 4,
                          layers=[2, 2, 2, 2],
                          stem=R2Plus1dStem,
                          **kwargs)
    # We need exact Caffe2 momentum for BatchNorm scaling
    for m in model.modules():
        if isinstance(m, nn.BatchNorm3d):
            m.eps = 1e-3
            m.momentum = 0.9
    return model