Ejemplo n.º 1
0
def generate_speed_data(traj_dir, grid_idx, feature_path):
    MIN_DISTANCE_IN_METER = 5
    MAX_DISTANCE_IN_METER = 300
    speed_data = np.zeros((grid_idx.row_num, grid_idx.col_num, 1), dtype=np.float)
    cnt_data = np.zeros((grid_idx.row_num, grid_idx.col_num, 1), dtype=np.float)
    for filename in tqdm(os.listdir(traj_dir)):
        if not filename.endswith('.txt'):
            continue
        traj_list = parse_traj_file(os.path.join(traj_dir, filename))
        for traj in traj_list:
            for i in range(len(traj.pt_list) - 1):
                cur_pt, next_pt = traj.pt_list[i], traj.pt_list[i + 1]
                delta_time = (next_pt.time - cur_pt.time).total_seconds()
                if MIN_DISTANCE_IN_METER < distance(cur_pt, next_pt) < MAX_DISTANCE_IN_METER:
                    try:
                        row_idx, col_idx = grid_idx.get_matrix_idx(cur_pt.lat, cur_pt.lng)
                        speed = distance(next_pt, cur_pt) / delta_time
                        # 120 km/h
                        if speed > 34:
                            continue
                        speed_data[row_idx, col_idx, 0] += speed
                        cnt_data[row_idx, col_idx, 0] += 1
                    except IndexError:
                        continue
    speed_data = np.divide(speed_data, cnt_data, out=np.zeros_like(speed_data), where=cnt_data != 0)
    np.save(os.path.join(feature_path, 'speed.npy'), speed_data)
Ejemplo n.º 2
0
 def remove_similar_links(self, rn, edge_virtual_links):
     new_edge_virtual_links = copy.copy(edge_virtual_links)
     o = edge_virtual_links[0].end_node
     stable = False
     while not stable:
         stable = True
         for i in range(len(new_edge_virtual_links) - 1):
             link_a = new_edge_virtual_links[i]
             a = cal_loc_along_line(rn.edges[link_a.target_segment]['coords'][link_a.split_edge_idx],
                                    rn.edges[link_a.target_segment]['coords'][link_a.split_edge_idx + 1],
                                    link_a.split_edge_offset)
             for j in range(i + 1, len(new_edge_virtual_links)):
                 link_b = new_edge_virtual_links[j]
                 b = cal_loc_along_line(rn.edges[link_b.target_segment]['coords'][link_b.split_edge_idx],
                                        rn.edges[link_b.target_segment]['coords'][link_b.split_edge_idx + 1],
                                        link_b.split_edge_offset)
                 # if small angle
                 if angle(o, a, o, b) < self.SIMILAR_DIRECTION_THRESHOLD:
                     # delete longer edge
                     if distance(o, a) < distance(o, b):
                         new_edge_virtual_links.remove(new_edge_virtual_links[j])
                     else:
                         new_edge_virtual_links.remove(new_edge_virtual_links[i])
                     stable = False
                     break
             if not stable:
                 break
     return new_edge_virtual_links
Ejemplo n.º 3
0
def generate_transition_view(traj_dir, grid_idx, nbhd_size, nbhd_dist, feature_path):
    MIN_DISTANCE_IN_METER = 5
    MAX_DISTANCE_IN_METER = 300
    meters_per_grid = grid_idx.lat_interval / LAT_PER_METER
    radius = int(nbhd_dist / meters_per_grid)
    transit_data = np.zeros((grid_idx.row_num, grid_idx.col_num, nbhd_size, nbhd_size, 2),
                            dtype=np.uint8)
    for filename in tqdm(os.listdir(traj_dir)):
        if not filename.endswith('.txt'):
            continue
        traj_list = parse_traj_file(os.path.join(traj_dir, filename))
        for traj in traj_list:
            for idx in range(len(traj.pt_list) - 1):
                cur_pt = traj.pt_list[idx]
                next_pt = traj.pt_list[idx + 1]
                if MIN_DISTANCE_IN_METER < distance(cur_pt, next_pt) < MAX_DISTANCE_IN_METER:
                    try:
                        global_cur_i, global_cur_j = grid_idx.get_matrix_idx(cur_pt.lat, cur_pt.lng)
                        local_idx = get_local_idx(global_cur_i, global_cur_j, radius, grid_idx, nbhd_dist)
                        local_next_i, local_next_j = local_idx.get_matrix_idx(next_pt.lat, next_pt.lng)
                        transit_data[global_cur_i, global_cur_j, local_next_i, local_next_j, 0] = 1

                        global_next_i, global_next_j = grid_idx.get_matrix_idx(next_pt.lat, next_pt.lng)
                        local_idx = get_local_idx(global_next_i, global_next_j, radius, grid_idx, nbhd_dist)
                        local_cur_i, local_cur_j = local_idx.get_matrix_idx(cur_pt.lat, cur_pt.lng)
                        transit_data[global_next_i, global_next_j, local_cur_i, local_cur_j, 1] = 1
                    except IndexError:
                        continue
    np.save(os.path.join(feature_path, 'transition.npy'), transit_data)
Ejemplo n.º 4
0
def generate_line_image(traj_dir, grid_idx, feature_path):
    MIN_DISTANCE_IN_METER = 5
    MAX_DISTANCE_IN_METER = 300
    traj_line_img = np.zeros((grid_idx.row_num, grid_idx.col_num),
                             dtype=np.uint8)
    for filename in tqdm(os.listdir(traj_dir)):
        if not filename.endswith('.txt'):
            continue
        traj_list = parse_traj_file(os.path.join(traj_dir, filename))
        for traj in traj_list:
            one_traj_line_img = np.zeros((grid_idx.row_num, grid_idx.col_num),
                                         dtype=np.uint8)
            for j in range(len(traj.pt_list) - 1):
                cur_pt, next_pt = traj.pt_list[j], traj.pt_list[j + 1]
                if MIN_DISTANCE_IN_METER < distance(
                        cur_pt, next_pt) < MAX_DISTANCE_IN_METER:
                    try:
                        y1, x1 = grid_idx.get_matrix_idx(
                            cur_pt.lat, cur_pt.lng)
                        y2, x2 = grid_idx.get_matrix_idx(
                            next_pt.lat, next_pt.lng)
                        cv2.line(one_traj_line_img, (x1, y1), (x2, y2),
                                 16,
                                 1,
                                 lineType=cv2.LINE_AA)
                    except IndexError:
                        continue
            traj_line_img = cv2.add(traj_line_img, one_traj_line_img)
    cv2.imwrite(os.path.join(feature_path, 'line.png'), traj_line_img)
Ejemplo n.º 5
0
 def extension_intersection(self, o, f, target_coords):
     min_dist = float('inf')
     split_edge_idx = float('inf')
     split_edge_offset = float('inf')
     # check whether internal edge has intersection (if multiple intersections, select the shortest)
     for i in range(0, len(target_coords) - 1):
         a = target_coords[i]
         b = target_coords[i + 1]
         result = line_ray_intersection_test(o, f, a, b)
         if result is None or result[0] < 0 or result[0] > 1:
             continue
         else:
             dist_tmp = distance(o, result[1])
             if dist_tmp < self.radius and dist_tmp < min_dist:
                 nearest_node_with_offset = (target_coords[i], 0.0) if result[0] < 0.5 else \
                     (target_coords[i + 1], 1.0)
                 min_dist = dist_tmp
                 split_edge_idx = i
                 # prefer link to existing nodes if too short
                 if distance(nearest_node_with_offset[0], result[1]) < self.NO_NEW_VERTEX_OFFSET:
                     split_edge_offset = nearest_node_with_offset[1]
                 else:
                     split_edge_offset = result[0]
     # doesn't have internal intersection, check whether has smooth transition
     if split_edge_idx == float('inf'):
         # check start node
         tmp_dist = distance(target_coords[0], o)
         if tmp_dist < self.radius and \
                 angle_between((o.lng - f.lng, o.lat - f.lat),
                               (target_coords[0].lng - o.lng, target_coords[0].lat - o.lat)) <= 0.5 * np.pi:
             min_dist = tmp_dist
             split_edge_idx = 0
             split_edge_offset = 0.0
         # check end node
         tmp_dist = distance(target_coords[-1], o)
         if tmp_dist < self.radius and \
                 angle_between((o.lng - f.lng, o.lat - f.lat),
                               (target_coords[-1].lng - o.lng, target_coords[-1].lat - o.lat)) <= 0.5 * np.pi:
             if tmp_dist < min_dist:
                 split_edge_idx = len(target_coords) - 2
                 split_edge_offset = 1.0
     return split_edge_idx, split_edge_offset
Ejemplo n.º 6
0
 def perpendicular_intersection(self, o, target_coords, rn, opposite_of_o, target_segment):
     split_edge_idx = float('inf')
     split_edge_offset = float('inf')
     o_min_dist, o_split_edge_idx, o_split_edge_offset = self.cal_projection(o, target_coords)
     other_min_dist, other_split_edge_idx, other_split_edge_offset = self.cal_projection(opposite_of_o,
                                                                                         target_coords)
     if o_min_dist < other_min_dist:
         split_edge_idx = o_split_edge_idx
         split_edge_offset = o_split_edge_offset
     # no internal intersection
     if split_edge_idx == float('inf'):
         # the target segment is also a short isolated one
         if rn.edges[target_segment]['length'] < self.NO_NEW_VERTEX_OFFSET and \
                 rn.degree(target_segment[0]) == 1 and rn.degree(target_segment[1]) == 1:
             a = SPoint(target_segment[0][1], target_segment[0][0])
             b = SPoint(target_segment[1][1], target_segment[1][0])
             dead_end_to_target_dist = min(distance(o, a), distance(o, b))
             opposite_to_target_dist = min(distance(opposite_of_o, a), distance(opposite_of_o, b))
             # current dead end is shorter to the target than opposite, link with the nearest vertex
             if dead_end_to_target_dist < opposite_to_target_dist and dead_end_to_target_dist < self.radius:
                 target = a if distance(o, a) < distance(o, b) else b
                 if target == target_coords[0]:
                     split_edge_idx = 0
                     split_edge_offset = 0.0
                 else:
                     split_edge_idx = len(target_coords) - 2
                     split_edge_offset = 1.0
     return split_edge_idx, split_edge_offset
Ejemplo n.º 7
0
def generate_dir_dist_data(traj_dir, grid_idx, feature_path):
    MIN_DISTANCE_IN_METER = 5
    MAX_DISTANCE_IN_METER = 300
    dir_data = np.zeros((grid_idx.row_num, grid_idx.col_num, 8), dtype=np.uint8)
    for filename in tqdm(os.listdir(traj_dir)):
        if not filename.endswith('.txt'):
            continue
        traj_list = parse_traj_file(os.path.join(traj_dir, filename))
        for traj in traj_list:
            for i in range(len(traj.pt_list) - 1):
                cur_pt, next_pt = traj.pt_list[i], traj.pt_list[i + 1]
                if MIN_DISTANCE_IN_METER < distance(cur_pt, next_pt) < MAX_DISTANCE_IN_METER:
                    try:
                        row_idx, col_idx = grid_idx.get_matrix_idx(cur_pt.lat, cur_pt.lng)
                        direction = int(((bearing(cur_pt, next_pt) + 22.5) % 360) // 45)
                        dir_data[row_idx, col_idx, direction] += 1
                    except IndexError:
                        continue
    np.save(os.path.join(feature_path, 'direction.npy'), dir_data)
Ejemplo n.º 8
0
 def update_link(self, linked_rn, from_pt, to_pt, coords, avail_eid):
     """
     make sure two link will not have too similar direction
     """
     is_valid = True
     link_dist = distance(from_pt, to_pt)
     # if the new edge is shorter, add new edge and delete old edge
     # check from pt
     links_with_from = [edge for edge in list(linked_rn.edges((from_pt.lng, from_pt.lat))) if
                        linked_rn.edges[edge]['type'] == 'virtual']
     edges_to_delete = []
     for u, v in links_with_from:
         other_node = v if u[0] == from_pt.lng and u[1] == from_pt.lat else u
         ang = angle(from_pt, to_pt, from_pt, SPoint(other_node[1], other_node[0]))
         if ang < self.SIMILAR_DIRECTION_THRESHOLD:
             if link_dist >= linked_rn[u][v]['length']:
                 is_valid = False
                 break
             else:
                 edges_to_delete.append((u, v))
     # check to pt
     links_with_to = [edge for edge in list(linked_rn.edges((to_pt.lng, to_pt.lat))) if
                      linked_rn.edges[edge]['type'] == 'virtual']
     for u, v in links_with_to:
         other_node = v if u[0] == to_pt.lng and u[1] == to_pt.lat else u
         ang = angle(to_pt, from_pt, to_pt, SPoint(other_node[1], other_node[0]))
         if ang < self.SIMILAR_DIRECTION_THRESHOLD:
             if link_dist >= linked_rn[u][v]['length']:
                 is_valid = False
                 break
             else:
                 edges_to_delete.append((u, v))
     if is_valid:
         linked_rn.add_edge((from_pt.lng, from_pt.lat), (to_pt.lng, to_pt.lat), coords=coords, eid=avail_eid,
                            type='virtual')
         for u, v in edges_to_delete:
             if linked_rn.has_edge(u, v):
                 # didn't destroy the connectivity
                 if linked_rn.degree(u) == 2 or linked_rn.degree(v) == 2:
                     continue
                 linked_rn.remove_edge(u, v)
 def is_valid(self, coords):
     dist = 0.0
     for i in range(len(coords) - 1):
         dist += distance(coords[i], coords[i + 1])
     return dist > self.min_road_dist