def noise_sampler(bs): return np.random.normal(0.0, 1.0, [bs, 3]) if __name__ == '__main__': from objectives.bayes_logistic_regression.synthetic import Synthetic from models.discriminator import MLPDiscriminator from models.generator import create_nice_network from train.wgan_nll import Trainer os.environ['CUDA_VISIBLE_DEVICES'] = '0' energy_fn = Synthetic(batch_size=32) discriminator = MLPDiscriminator([800, 800, 800]) generator = create_nice_network(3, 10, [ ([400], 'v1', False), ([400, 400], 'x1', True), ([400], 'v2', False), ]) trainer = Trainer(generator, energy_fn, discriminator, noise_sampler, b=16, m=4, eta=5) trainer.train(bootstrap_steps=3000, bootstrap_burn_in=1000)
def noise_sampler(bs): return np.random.normal(0.0, 1.0, [bs, 25]) if __name__ == '__main__': from objectives.bayes_logistic_regression.german import German from models.discriminator import MLPDiscriminator from models.generator import create_nice_network from train.wgan_nll import Trainer os.environ['CUDA_VISIBLE_DEVICES'] = '0' energy_fn = German(batch_size=32) discriminator = MLPDiscriminator([800, 800, 800]) generator = create_nice_network(25, 50, [ ([400], 'v1', False), ([400, 400], 'x1', True), ([400], 'v2', False), ]) trainer = Trainer(generator, energy_fn, discriminator, noise_sampler, b=16, m=2) trainer.train(bootstrap_steps=5000, bootstrap_burn_in=1000, bootstrap_discard_ratio=0.5)
import os import sys sys.path.append(os.getcwd()) def noise_sampler(bs): return np.random.normal(0.0, 1.0, [bs, 2]) if __name__ == '__main__': from objectives.expression.mog6 import MixtureOfGaussians from models.discriminator import MLPDiscriminator from models.generator import create_nice_network from train.wgan_nll import Trainer os.environ['CUDA_VISIBLE_DEVICES'] = '' energy_fn = MixtureOfGaussians(display=False) discriminator = MLPDiscriminator([400, 400, 400]) generator = create_nice_network( 2, 2, [ ([400], 'v1', False), ([400], 'x1', True), ([400], 'v2', False), ] ) trainer = Trainer(generator, energy_fn, discriminator, noise_sampler, b=8, m=2) trainer.train()