Ejemplo n.º 1
0
def scan_evaluation_dir_only(mytype, split, input_lang, output_lang):
    # Load an entire SCAN pattern file as the query set
    #  Just use the isolated directions as the support set
    #
    # Input
    #  mytype : type of SCAN experiment
    #  split : 'train' or 'test'
    #  ... other inputs are language objects
    D_query = ge.load_scan_file(mytype, split)
    D_support = [('turn left', 'I_TURN_LEFT'), ('turn right', 'I_TURN_RIGHT')]
    random.shuffle(D_support)
    x_support = [d[0].split(' ') for d in D_support]
    y_support = [d[1].split(' ') for d in D_support]
    x_query = [d[0].split(' ') for d in D_query]
    y_query = [d[1].split(' ') for d in D_query]
    return build_sample(x_support, y_support, x_query, y_query, input_lang,
                        output_lang, '')
Ejemplo n.º 2
0
def scan_evaluation_val_support(mytype, split, input_lang, output_lang,
                                samples_val):
    # Use the pre-generated in the validation episodes as the support set.
    #  Replace the validation episodes' query sets as the rest of the SCAN split (e.g., the entire length test set)
    #
    # Input
    #  mytype : type of SCAN experiment
    #  split : 'train' or 'test'
    #  ... other inputs are language objects
    #  samples_val : list of pre-generated validation episodes
    D_query = ge.load_scan_file(
        mytype, split)  # e.g., we can load in the entire "length" test set
    x_query = [d[0].split(' ') for d in D_query]
    y_query = [d[1].split(' ') for d in D_query]
    for idx in range(len(samples_val)):
        samples = samples_val[idx]
        samples_val[idx] = build_sample(samples['xs'], samples['ys'],
                                        deepcopy(x_query), deepcopy(y_query),
                                        input_lang, output_lang, '')
    return samples_val
Ejemplo n.º 3
0
def scan_evaluation_prim_only(mytype, split, input_lang, output_lang):
    # Load an entire SCAN split as the query set.
    #   Use the isolated primitives as the support set
    #
    # Input
    #  mytype : type of SCAN experiment
    #  split : 'train' or 'test'
    #  ... other inputs are language objects
    D_query = ge.load_scan_file(mytype, split)
    _, _, D_primitive = ge.sample_augment_scan(0,
                                               0, [],
                                               shuffle=False,
                                               inc_support_in_query=False)
    D_support = D_primitive  # support set only includes the primitive mappings...
    random.shuffle(D_support)
    x_support = [d[0].split(' ') for d in D_support]
    y_support = [d[1].split(' ') for d in D_support]
    x_query = [d[0].split(' ') for d in D_query]
    y_query = [d[1].split(' ') for d in D_query]
    return build_sample(x_support, y_support, x_query, y_query, input_lang,
                        output_lang, '')