def test_train(self): output_dir = mkdtemp() #CMD line as in README.txt args = [ "--model_desc=config.json", "--output_dir=" + output_dir, "--num_train_epochs=1", "--size_to_read=1", "--per_gpu_train_batch_size=1", "--total_train_batch_size=8", "--dns_datasets=../../../data/noise_suppression/datasets", "--logacc=1" ] main_train(args) model_onnx = os.path.join(output_dir, "model.onnx") self.assertEqual(True, os.path.exists(model_onnx), model_onnx + " was not created by train script") #run convereter to IR as in README.txt INTEL_OPENVINO_DIR = os.getenv("INTEL_OPENVINO_DIR") export_command = "python {}/deployment_tools/model_optimizer/mo.py".format( INTEL_OPENVINO_DIR) export_command += " --input_model " + model_onnx export_command += " --output_dir " + output_dir res = subprocess.run(export_command, shell=True, check=False) self.assertEqual(0, res.returncode, "fail to run " + export_command) model_xml = os.path.join(output_dir, "model.xml") self.assertEqual(True, os.path.exists(model_xml), model_xml + " was not created by Model Optimizer") model_bin = os.path.join(output_dir, "model.bin") self.assertEqual(True, os.path.exists(model_bin), model_bin + " was not created by Model Optimizer")
def main(): parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Testing') parser = parse_args(parser) args, unknown_args = parser.parse_known_args() if "train" in args.bench_class: main_train() else: main_infer()
from onmt.opts_preprocess import OPT_PREPROCESS from onmt.opts_train import OPT_TRAIN from onmt.opts_translate import OPT_TRANSLATE from preprocess import main as main_preprocess from train import main as main_train from translate import main as main_translate opt_preprocess = OPT_PREPROCESS(reverse=True) opt_train = OPT_TRAIN(reverse=True) opt_translate = OPT_TRANSLATE(reverse=True) if __name__=='__main__': main_preprocess(opt_preprocess) main_train(opt_train) main_translate(opt_translate)
def train_model(): mode = request.args.get('dev') score = train.main_train(mode=mode) return jsonify({'score': score}), 200, {"mimetype": "application/json"}
logging_group.add_argument('--log_interval', type=int, default=1000, help='log at this interval (defaults to 1000)') logging_group.add_argument('--validation' , default=False, action='store_true', help='use validation dataset for validation ') logging_group.add_argument('--val_log_interval', type=int, default=1000, help="log the validation output at the given interval") logging_group.add_argument('--real_left_v', help='The location of the folder containing the left real images.') logging_group.add_argument('--real_right_v', help='The location of the folder containing the right real images.') logging_group.add_argument('--disp_left_v', help='The location of the folder containing the left disparity map') #edit logging_group.add_argument('--disp_right_v', help='The location of the folder containing the right disparity map') logging_group.add_argument('--batch_size_v', type=int, default=50, help='batch size of the validation data') # TPU related Arguments tpu_group = parser.add_argument_group("TPU","Arguments for TPU training") tpu_group.add_argument("--num_cores", type = int, default=8, help="Defines the number of TPU cores to use") tpu_group.add_argument("--loader_prefetch_size", type=int, default=8, help='Defines the loader prefetch queue size') tpu_group.add_argument("--device_prefetch_size", type=int, default=4, help='Defines the device prefetch size') # Other parser.add_argument('--cuda', default=False, action='store_true', help='use cuda') parser.add_argument('--tpu', default=False, action='store_true', help='use tpu') parser.add_argument('--c1', type=float, default=1, help='smooth loss') parser.add_argument('--c2', type=float, default=1, help='recon loss') parser.add_argument('--c3', type=float, default=1, help='dipsmi loss') parser.add_argument('--c4', type=float, default=1, help='edge loss') # Parse arguments args = parser.parse_args() if args.tpu: print("tpu enabled") import torch_xla.distributed.xla_multiprocessing as xmp xmp.spawn(train.main_train, args=(args,), nprocs=args.num_cores)#, start_method='fork') else: train.main_train(0,args)
type=str, help='Relative path to ground truth masks') # Training parameters parser.add_argument('--n_epochs', default=101, type=int, help='Number of epochs for training') config = parser.parse_args() for o in config.out_res: for d in config.scalings: for p in config.degree: c = o // 2**d config.model_path = f"../example_output/saved_models/weights_chd_ct_table1-O{o}-d{d}-p{p}.pth" ARGS_TRAIN = [ "--base_data_dir", config.base_data_dir, "--sub_data_dir", config.sub_data_dir, "--base_output_dir", config.base_output_dir, "--image_dir", config.image_dir, "--mask_dir", config.mask_dir, "--degree", str(p), "--scalings", str(d), "--code_size", str(c), "--model_in", config.model_path, "--model_out", config.model_path, "--network", config.network, "--n_epochs", str(config.n_epochs) ] config_args_train = parse_arguments_train(args=ARGS_TRAIN) main_train(config_args_train)
def main(args): help_str = "Do `python3 src [local, gcloud, floyd, devbox] [predict, train, confusion]`" params = {} if args[1] == 'floyd': print("FLOYD ENV") params = { 'data_path': '/data', 'output_path': '/output', 'audio_path': '/data/*/*wav', 'validation_list_path': '/data/validation_list.txt', 'tensorboard_root': '/output', 'sample': False, 'sample_size': 1000, 'epochs': 20, 'batch_size': 64, 'submission_path': './output/submission', 'test_path': '???', 'batch_size_pred': 64 } elif args[1] == 'gcloud': print("GCLOUD ENV") params = { 'data_path': '/mnt/data/speech/', 'output_path': './output', 'audio_path': '/mnt/data/speech/train/audio/*/*wav', 'validation_list_path': '/mnt/data/speech/train/validation_list.txt', 'tensorboard_root': './output', 'sample': False, 'sample_size': 2000, 'epochs': 60, 'batch_size': 64, 'submission_path': './submissions', 'test_path': '/mnt/data/speech/test/audio/*wav', 'batch_size_pred': 64 } elif args[1] == 'devbox': print("DEVBOX ENV") params = { 'data_path': '/home/ilya/Data/speech/', 'output_path': '/home/ilya/Data/speech/out/output', 'audio_path': '/home/ilya/Data/speech/train/audio/*/*wav', 'validation_list_path': '/home/ilya/Data/speech/train/validation_list.txt', 'tensorboard_root': '/home/ilya/Data/speech/out/output', 'sample': False, 'sample_size': 2000, 'epochs': 120, 'batch_size': 128, 'submission_path': '/home/ilya/Data/speech/out/submissions', 'test_path': '/home/ilya/Data/speech/test/audio/*wav', 'batch_size_pred': 64 } elif sys.argv[1] == 'local': print("DEV ENV") params = { 'data_path': './data', 'output_path': './output', 'audio_path': './data/train/audio/*/*wav', 'validation_list_path': './data/train/validation_list.txt', 'tensorboard_root': '/tmp/tensorflow/', 'sample': True, 'sample_size': 40, 'epochs': 10, 'batch_size': 8, 'submission_path': './submissions', 'test_path': './data/test/audio/*wav', 'batch_size_pred': 1 } else: print(help_str) exit(-1) if len(args) == 4 and args[2] == 'predict': params['model_path'] = args[3] main_predict(params) elif len(args) == 3 and args[2] == 'train': main_train(params, Classifier1D) elif len(args) == 3 and args[2] == 'train_deep_1d': main_train(params, Deep1DClassifier) elif len(args) == 3 and args[2] == 'train_resnet_1d': main_train(params, Deep1DResnetClassifier) elif len(args) == 4 and args[2] == 'confusion': params['model_path'] = args[3] main_confusion_matrix(params) else: print(help_str) exit(-1)
################################################################### # backup dataset check_N_mkdir(os.path.join(hyperparams['folder_name'], 'copy')) shutil.copytree(hyperparams['train_dir'], os.path.join(hyperparams['folder_name'], 'copy', 'train')) shutil.copytree(hyperparams['val_dir'], os.path.join(hyperparams['folder_name'], 'copy', 'val')) shutil.copytree(hyperparams['test_dir'], os.path.join(hyperparams['folder_name'], 'copy', 'test')) try: hyperparams['max_nb_cls'] = get_max_nb_cls(hyperparams['train_dir'])[1] start_time = datetime.datetime.now() main_train(hyperparams, grad_view=True, nb_classes=hyperparams['max_nb_cls']) train_time = (datetime.datetime.now() - start_time) / 3600 except Exception as e: logger.error('%%%%%%%%%%%%%%%%%%%%Errors during training') logger.error(e) try: # save lr_curves check_N_mkdir(os.path.join(hyperparams['folder_name'], 'curves')) ac_tn, _, ls_tn, _ = lr_curve_extractor( os.path.join(hyperparams['folder_name'], 'train')) _, ac_val, _, ls_val = lr_curve_extractor( os.path.join(hyperparams['folder_name'], 'test')) best_step = ac_val.step.loc[ac_val.value.argmax()] # best_step=0
import json import train CONST_HOMEDIR = os.environ['HOME'] CONST_QSUB_FILEPATH = "{}/qsub".format(os.environ['HOME']) JOB_ID = int(sys.argv[1]) #Set CWD os.chdir(CONST_QSUB_FILEPATH) #Load the JSON file associated with this f_json = open("{}.json".format(JOB_ID), 'r') training_args_dict = json.loads(f_json.read()) f_json.close() #Resolve the $HOME directory for key in training_args_dict.keys(): if type(training_args_dict[key]) == str: training_args_dict[key] = training_args_dict[key].format(CONST_HOMEDIR) #Log info print("Running NCR training with params:") for key in training_args_dict.keys(): print("\t{} --> {}".format(key, training_args_dict[key])) #Start the training training_args = train.MainTrainArgClass(**training_args_dict) train.main_train(training_args, JOB_ID)