def extract_list(): # Load options parser = argparse.ArgumentParser(description='Attribute Learner') parser.add_argument('--config', type = str, help = 'Path to config .opt file. Leave blank if loading from opts.py') parser.add_argument('--pth', type = str, help = 'Path to model checkpoint. Leave blank if testing bestmodel') parser.add_argument('--input_list', type = str, help = 'Path to list with image paths') parser.add_argument('--output_list', type = str, help = 'Path to list where to store results') conf = parser.parse_args() opt = torch.load(conf.config) if conf.config else get_opts() opt.ngpu = 1 opt.batch_size=16 print('Loading model ...') M = Model(opt) checkpoint = torch.load(conf.pth) try: checkpoint = {key.replace('module.', ''): value for key, value in checkpoint['state_dict'].items()} except: pass M.model.load_state_dict(checkpoint) M.model.eval() test_loader = datasets.generate_loader(opt, 'test', conf.input_list) torch.set_grad_enabled(False) out_f = open(conf.output_list,'w') for batch_idx, (data, target) in tqdm(enumerate(test_loader)): #print('Extracting batch # {batch_idx} ...') data=data.to(M.device) output = M.model(data) output = torch.cat(output,1).detach().cpu().numpy() log_str='\n'.join(map(lambda x: ','.join(map(str,x)),output))+'\n' out_f.write(log_str) out_f.close() print('Extracting done!')
def main(): # Load options parser = argparse.ArgumentParser(description='Attribute Learner') parser.add_argument( '--config', type=str, help='Path to config .opt file. Leave blank if loading from opts.py') conf = parser.parse_args() opt = torch.load(conf.config) if conf.config else get_opts() print('===Options==') d = vars(opt) for k in d.keys(): print(k, ':', d[k]) # Fix seed random.seed(opt.manual_seed) np.random.seed(opt.manual_seed) torch.manual_seed(opt.manual_seed) torch.cuda.manual_seed_all(opt.manual_seed) cudnn.benchmark = True # Create working directories try: os.makedirs(opt.out_path) os.makedirs(os.path.join(opt.out_path, 'checkpoints')) os.makedirs(os.path.join(opt.out_path, 'log_files')) print('Directory {} was successfully created.'.format(opt.out_path)) except OSError: print('Directory {} already exists.'.format(opt.out_path)) pass # Training M = Model(opt) M.train() '''
def main(config): # device device = torch.device("cuda" if config.cuda else "cpu") # model if config.model == 'VAE': model = VAE().to(device) model = Model(model, config) # data data = MNISTDataModule(config) data.prepare_data() data.setup() train_loader = data.train_dataloader() val_loader = data.val_dataloader() test_loader = data.test_dataloader() # samples, _ = next(iter(test_loader)) # samples = samples[:8, :] # logger wandb_logger = WandbLogger(project=config.project, name=config.model) # trainer trainer = pl.Trainer( logger=wandb_logger, # W&B integration log_every_n_steps=10, # set the logging frequency gpus=-1, # use all GPUs max_epochs=config.epochs, # number of epochs deterministic=True, # keep it deterministic #callbacks=[ImagePredictionLogger(samples)] ) # fit the model trainer.fit(model, train_loader, val_loader) wandb.finish() # save last model if config.save_model: torch.save(model.state_dict(), "VAE.pt")
def run(): train_file = "train_sentiment.txt" test_file = "test_sentiment.txt" vocab_file = "sentiment.vocab" train_set = dataset.TextFileDataset() train_set.load_vocab(train_file, 5000) train_set.input_length = 30 train_set.save_vocab(vocab_file) train_set.load(train_file) test_set = dataset.TextFileDataset() test_set.reload_vocab(vocab_file) test_set.load(test_file) trainer = Model() trainer.max_epoch = 10 trainer.model = gen_lstm(train_set.vocab_size(), train_set.input_length, train_set.num_classes()) trainer.train(train_set, test_set, batch_size=32, verbose=True)
if (result[0][v] == max_prob): print(classifiction[v]) print "vechile classified" font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img_final, classifiction[v], (Y_new[i] + q1, X_new[i] + p1), font, 1, color, 2, cv2.CV_AA) cv2.putText(img_final_1, classifiction[v], (Y_new[i] + q1, X_new[i] + p1), font, 1, color, 2, cv2.CV_AA) if __name__ == '__main__': #cap = cv2.VideoCapture(0) #cascade_path = "/home/antara/Downloads/opencv-2.4.10/data/haarcascades/haarcascade_frontalface_alt.xml" model = Model() model_final = Model_final() model_classification = Model_classification() model.load() model_final.load() model_classification.load() i = 0 key = 0 count = 0 car_count = 0 while (count == 0): path = input('Enter the image path') img = cv2.imread(path) img_final_1 = cv2.imread(path) img_final = cv2.imread(path)
# -*- coding:utf-8 -*- import cv2 from trainer import Model from trainer import Model_final dict = {0:"Backgound", 1:"Car"} if __name__ == '__main__': cap = cv2.VideoCapture(0) #cascade_path = "/home/antara/Downloads/opencv-2.4.10/data/haarcascades/haarcascade_frontalface_alt.xml" model = Model() model_final = Model_final() model.load() model_final.load() i = 0 key = 0 img1 = cv2.imread('1.png') img2 = cv2.imread('7.png') result = model.predict(img1) max_prob = max(result[0]) for i in xrange(len(result[0])): if(result[0][i] == max_prob): key = i try: print (dict[key]) #cv2.putText(frame,dict[key],tuple(rect[0:2]), font, 1,color,2,cv2.CV_AA) except KeyError:
os.remove(video) except: failed.append(video) print("9") path_video_files = dppvm.DEST / 'videos' path_meta = dppvm.DEST / 'metadata' / 'all_meta.json' all_meta = pd.read_json(path_meta).T all_meta["path"] = path_video_files + r'/' + all_meta.index # Train the model print("10") val_msk = int(len(all_meta) * 0.9) gener = ppf.DataGenerator(all_meta[:val_msk].index, video_path=all_meta[:val_msk].path, meta=all_meta[:val_msk]) val = ppf.DataGenerator(all_meta[val_msk:].index, video_path=all_meta[val_msk:], meta=all_meta[val_msk:]) print("11") model = Model.make_model(n_frames, dims, channels) model.compile(optimizer=optimizer, loss=binloss, metrics=[acc]) print("12") Model.train_and_evaluate(gener, callbacks=callbacks_list, validation_data=val, use_multiprocessing=True, workers=-1, verbose=1, epochs=500) # Make_predicctions