Ejemplo n.º 1
0
def run_network(image, mask=None):
    global latent
    image = np.transpose(image, (2,0,1))
    real = misc.adjust_dynamic_range(image, [0, 255], [-1, 1])
    real = np.array([real])
    if mask is None:
        mask = np.ones((1, 1, 512, 512), np.uint8)
        #mask[0, 0, 270:500, 128:384] = 0 # mouth
        mask[0, 0, 128:384, 0:256] = 0 # eye
    else:
        mask = np.array([[mask]])
    fake = network.run(latent, [1], real, mask, truncation_psi=None)
    return misc.adjust_dynamic_range(fake, [-1, 1], [0, 255]).clip(0, 255).astype(np.uint8)
Ejemplo n.º 2
0
def process_weight_tf(weight, training_set, testing_set, queue):
    dnnlib.tflib.init_tf()
    print("running: " + weight)
    G, D, Gs = pickle.load(open(weight, "rb"))

    train_pred = []
    train_lab = []

    train_data = "/".join(training_set.split("/")[:-1])
    train_dir = training_set.split("/")[-1]

    test_data = "/".join(testing_set.split("/")[:-1])
    test_dir = testing_set.split("/")[-1]

    train = dataset.load_dataset(data_dir=train_data,
                                 tfrecord_dir=train_dir,
                                 max_label_size=1,
                                 repeat=False,
                                 shuffle_mb=0)
    test = dataset.load_dataset(data_dir=test_data,
                                tfrecord_dir=test_dir,
                                max_label_size=1,
                                repeat=False,
                                shuffle_mb=0)

    for x in range(train._np_labels.shape[0] - 1):
        try:
            image, label = train.get_minibatch_np(1)
            image = misc.adjust_dynamic_range(image, [0, 255], [-1, 1])
        except:
            break
        train_pred.append(D.run(image, None)[0][0])
        train_lab.append(label)
    print("done train")

    test_pred = []
    test_lab = []

    for x in range(test._np_labels.shape[0] - 1):
        try:
            image, label = test.get_minibatch_np(1)
            image = misc.adjust_dynamic_range(image, [0, 255], [-1, 1])

        except:
            break
        test_pred.append(D.run(image, None)[0][0])
        test_lab.append(label)

    hter = calculate_metrics(train_pred, train_lab, test_pred, test_lab)

    queue.put((weight.split("-")[-1].split(".")[0], hter))
    def _evaluate(self, Gs, E, Inv, num_gpus):
        minibatch_size = num_gpus * self.minibatch_per_gpu
        resolution = Gs.components.synthesis.output_shape[2]
        
        placeholder_portraits = tf.placeholder(tf.float32, [self.minibatch_per_gpu, 3, resolution, resolution], name='placeholder_portraits')
        placeholder_landmarks = tf.placeholder(tf.float32, [self.minibatch_per_gpu, 3, resolution, resolution], name='placeholder_landmarks')
        placeholder_keypoints = tf.placeholder(tf.float32, [self.minibatch_per_gpu, 136], name='placeholder_landmarks')
        
        fake_X_val = self.run_image_manipulation(E, Gs, Inv, placeholder_portraits, placeholder_landmarks, placeholder_keypoints, num_gpus)
        
        hd_sum = 0.0
        failed_counter = 0
        
        for idx, data in enumerate(self._iterate_reals(minibatch_size=minibatch_size)):
            image_data = data[0]
            batch_portraits = image_data[:,0,:,:,:]
            batch_landmarks = np.roll(image_data[:,1,:,:,:], shift=1, axis=0)
            
            keypoints = np.roll(data[1], shift=1, axis=0)

            batch_portraits = misc.adjust_dynamic_range(batch_portraits.astype(np.float32), [0, 255], [-1., 1.])
            batch_landmarks = misc.adjust_dynamic_range(batch_landmarks.astype(np.float32), [0, 255], [-1., 1.])

            begin = idx * minibatch_size
            end = min(begin + minibatch_size, self.num_images)
            samples_manipulated = tflib.run(fake_X_val, feed_dict={placeholder_portraits: batch_portraits, placeholder_landmarks: batch_landmarks, placeholder_keypoints: keypoints})
            
            samples_manipulated = misc.adjust_dynamic_range(samples_manipulated.astype(np.float32), [-1., 1.], [0, 255])
            samples_manipulated = np.transpose(samples_manipulated, [0, 2, 3, 1])

            batch_landmarks = misc.adjust_dynamic_range(batch_landmarks.astype(np.float32), [-1., 1.], [0, 255])

            for i in range(minibatch_size):
                try:
                  ground_truth_lm = batch_landmarks[i]
                  generated_lm, _ = self.landmark_extractor.generate_landmark_image(source_path_or_image=samples_manipulated[i], resolution=resolution)
                  generated_lm = generated_lm.cpu().detach().numpy()
                  ground_truth_lm = np.transpose(ground_truth_lm, [1, 2, 0])
                  hd_sum += self.calculate_landmark_hausdorff(ground_truth_lm, generated_lm)
                
                except Exception as e:
                  print('Error: Landmark couldnt be extracted from generated output. Skipping the sample')
                  failed_counter += 1
                  continue
                
            if end == self.num_images:
                break
        avg_hd_dist = hd_sum/(self.num_images - failed_counter)
        
        self._report_result(np.real(avg_hd_dist), suffix='/Average Landmark Hausdorff Distance')
        self._report_result(failed_counter, suffix='/Number of failed landmark extractions')
def create_from_images(checkpoint, image, mask, output):
    real = np.asarray(PIL.Image.open(image)).transpose([2, 0, 1])
    real = misc.adjust_dynamic_range(real, [0, 255], [-1, 1])
    mask = np.asarray(PIL.Image.open(mask).convert('1'),
                      dtype=np.float32)[np.newaxis]

    tflib.init_tf()
    _, _, Gs = misc.load_pkl(checkpoint)
    latent = np.random.randn(1, *Gs.input_shape[1:])
    fake = Gs.run(latent, None, real[np.newaxis], mask[np.newaxis])[0]
    fake = misc.adjust_dynamic_range(fake, [-1, 1], [0, 255])
    fake = fake.clip(0, 255).astype(np.uint8).transpose([1, 2, 0])
    fake = PIL.Image.fromarray(fake)
    fake.save(output)
Ejemplo n.º 5
0
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
    with tf.name_scope('ProcessReals'):
        with tf.name_scope('DynamicRange'):
            x = tf.cast(x, tf.float32)
            x = misc.adjust_dynamic_range(x, drange_data, drange_net)
        if mirror_augment:
            with tf.name_scope('MirrorAugment'):
                s = tf.shape(x)
                mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
                mask = tf.tile(mask, [1, s[1], s[2], s[3]])
                x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
        with tf.name_scope(
                'FadeLOD'
        ):  # Smooth crossfade between consecutive levels-of-detail.
            s = tf.shape(x)
            y = tf.reshape(x, [-1, s[1], s[2] // 2, 2, s[3] // 2, 2])
            y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
            y = tf.tile(y, [1, 1, 1, 2, 1, 2])
            y = tf.reshape(y, [-1, s[1], s[2], s[3]])
            x = tflib.lerp(x, y, lod - tf.floor(lod))
        with tf.name_scope(
                'UpscaleLOD'
        ):  # Upscale to match the expected input/output size of the networks.
            s = tf.shape(x)
            factor = tf.cast(2**tf.floor(lod), tf.int32)
            x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
            x = tf.tile(x, [1, 1, 1, factor, 1, factor])
            x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
        return x
def process_reals(x, labels, lod, mirror_augment, drange_data, drange_net):
    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope('MirrorAugment'):
            random_vector = tf.random_uniform([tf.shape(x)[0]]) < 0.5
            x = tf.where(random_vector, x, tf.reverse(x, [3]))
            rotation_offset = 108
            indices_first = tf.range(rotation_offset)
            swaps = tf.constant([0, 7, 6, 5, 4, 3, 2, 1]) + rotation_offset
            indices_last = tf.range(rotation_offset + 8, tf.shape(labels)[1])
            indices = tf.concat([indices_first, swaps, indices_last], axis=0)
            mirrored_labels = tf.gather(labels, indices, axis=1)
            labels = tf.where(random_vector, labels, mirrored_labels)
    with tf.name_scope(
            'FadeLOD'
    ):  # Smooth crossfade between consecutive levels-of-detail.
        s = tf.shape(x)
        y = tf.reshape(x, [-1, s[1], s[2] // 2, 2, s[3] // 2, 2])
        y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
        y = tf.tile(y, [1, 1, 1, 2, 1, 2])
        y = tf.reshape(y, [-1, s[1], s[2], s[3]])
        x = tflib.lerp(x, y, lod - tf.floor(lod))
    with tf.name_scope(
            'UpscaleLOD'
    ):  # Upscale to match the expected input/output size of the networks.
        s = tf.shape(x)
        factor = tf.cast(2**tf.floor(lod), tf.int32)
        x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
        x = tf.tile(x, [1, 1, 1, factor, 1, factor])
        x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
    return x, labels
Ejemplo n.º 7
0
def project_real_images(network_pkl, dataset_name, data_dir, num_images,
                        num_steps, num_snapshots, save_every_dlatent,
                        save_final_dlatent):
    assert num_snapshots <= num_steps, "Can't have more snapshots than number of steps taken!"
    print('Loading networks from "%s"...' % network_pkl)
    _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    proj = projector.Projector(num_steps=num_steps)
    proj.set_network(Gs)

    print('Loading images from "%s"...' % dataset_name)
    dataset_obj = dataset.load_dataset(data_dir=data_dir,
                                       tfrecord_dir=dataset_name,
                                       max_label_size=0,
                                       repeat=False,
                                       shuffle_mb=0)
    assert dataset_obj.shape == Gs.output_shape[1:]

    for image_idx in range(num_images):
        print('Projecting image %d/%d ...' % (image_idx, num_images))
        try:
            images, _labels = dataset_obj.get_minibatch_np(1)
            images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
            project_image(proj,
                          targets=images,
                          png_prefix=dnnlib.make_run_dir_path('image%04d-' %
                                                              image_idx),
                          num_snapshots=num_snapshots,
                          save_every_dlatent=save_every_dlatent,
                          save_final_dlatent=save_final_dlatent)
        except tf.errors.OutOfRangeError:
            print(
                f'Error! There are only {image_idx} images in {data_dir}{dataset_name}!'
            )
            sys.exit(1)
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
    with tf.name_scope('ProcessReals'):
        with tf.name_scope('DynamicRange'):
            x = tf.cast(x, tf.float32)
            x = misc.adjust_dynamic_range(x, drange_data, drange_net)
        if mirror_augment:
            with tf.name_scope('MirrorAugment'):
                s = tf.shape(x)
                mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
                mask = tf.tile(mask, [1, s[1], s[2], s[3]])
                x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
        with tf.name_scope('FadeLOD'):  # 连续细节级别之间的平滑淡入淡出。
            s = tf.shape(x)
            y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
            y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
            y = tf.tile(y, [1, 1, 1, 2, 1, 2])
            y = tf.reshape(y, [-1, s[1], s[2], s[3]])
            x = tflib.lerp(x, y, lod - tf.floor(lod))
        with tf.name_scope('UpscaleLOD'):  # 缩放以匹配网络的预期输入/输出大小。
            s = tf.shape(x)
            factor = tf.cast(2 ** tf.floor(lod), tf.int32)
            x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
            x = tf.tile(x, [1, 1, 1, factor, 1, factor])
            x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
        return x
Ejemplo n.º 9
0
def generate_images(network_pkl, seeds, create_new_G, new_func_name):
    tflib.init_tf()
    print('Loading networks from "%s"...' % network_pkl)
    # _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    _G, _D, I, Gs = misc.load_pkl(network_pkl)
    if create_new_G:
        Gs = Gs.convert(new_func_name=new_func_name)
    # noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]

    Gs_kwargs = dnnlib.EasyDict()
    # Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
    Gs_kwargs.randomize_noise = True

    for seed_idx, seed in enumerate(seeds):
        print('Generating image for seed %d (%d/%d) ...' %
              (seed, seed_idx, len(seeds)))
        rnd = np.random.RandomState(seed)
        z = rnd.randn(1, *Gs.input_shape[1:])  # [minibatch, component]
        # tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        images, _ = Gs.run(z, None,
                           **Gs_kwargs)  # [minibatch, height, width, channel]
        images = misc.adjust_dynamic_range(images, [-1, 1], [0, 255])
        # np.clip(images, 0, 255, out=images)
        images = np.transpose(images, [0, 2, 3, 1])
        images = np.rint(images).clip(0, 255).astype(np.uint8)
        PIL.Image.fromarray(images[0], 'RGB').save(
            dnnlib.make_run_dir_path('seed%04d.png' % seed))
Ejemplo n.º 10
0
def generate_domain_shift(network_pkl, seeds, domain_dim):
    tflib.init_tf()
    print('Loading networks from "%s"...' % network_pkl)
    # _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    _G, _D, I, Gs = misc.load_pkl(network_pkl)

    Gs_kwargs = dnnlib.EasyDict()
    # Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
    Gs_kwargs.randomize_noise = True

    for seed_idx, seed in enumerate(seeds):
        print('Generating image for seed %d (%d/%d) ...' %
              (seed, seed_idx, len(seeds)))
        rnd = np.random.RandomState(seed)
        z = rnd.randn(1, *Gs.input_shape[1:])  # [minibatch, component]
        # tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        images_1, _ = Gs.run(z, None,
                             **Gs_kwargs)  # [minibatch, c, height, width]
        z[:, domain_dim] = -z[:, domain_dim]
        images_2, _ = Gs.run(z, None,
                             **Gs_kwargs)  # [minibatch, c, height, width]
        images = np.concatenate((images_1, images_2), axis=3)
        images = misc.adjust_dynamic_range(images, [-1, 1], [0, 255])
        # np.clip(images, 0, 255, out=images)
        images = np.transpose(images, [0, 2, 3, 1])
        images = np.rint(images).clip(0, 255).astype(np.uint8)
        PIL.Image.fromarray(images[0], 'RGB').save(
            dnnlib.make_run_dir_path('seed%04d.png' % seed))
Ejemplo n.º 11
0
def process_reals(x, mirror_augment, drange_data, drange_net, depth=9):
    def downsample2x(in_x, factor=2):
        assert isinstance(factor,
                          int) and factor >= 1, "factor can't be negative or 0"
        if factor == 1:
            return in_x
        with tf.variable_scope("Downscale2D"):
            ksize = [1, 1, factor, factor]
            return tf.nn.avg_pool(
                in_x,
                ksize=ksize,
                strides=ksize,
                padding="VALID",
                data_format="NCHW"
            )  # NOTE: requires tf_config['graph_options.place_pruned_graph'] = True
        return in_x

    with tf.name_scope("ProcessReals"):
        with tf.name_scope("DynamicRange"):
            x = tf.cast(x, tf.float32)
            x = misc.adjust_dynamic_range(x, drange_data, drange_net)
        if mirror_augment:
            with tf.name_scope("MirrorAugment"):
                s = tf.shape(x)
                mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
                mask = tf.tile(mask, [1, s[1], s[2], s[3]])
                x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
        x_s = [x]
        for _ in range(depth - 1):
            x = downsample2x(x)
            x_s.append(x)

        return list(reversed(x_s))
Ejemplo n.º 12
0
def project_real_images(network_pkl, dataset_name, data_dir, num_images,
                        num_snapshots):
    print('Loading networks from "%s"...' % network_pkl)
    _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    proj = projector.Projector()
    proj.set_network(Gs)

    print('Loading images from "%s"...' % dataset_name)
    dataset_obj = dataset.load_dataset(data_dir=data_dir,
                                       tfrecord_dir=dataset_name,
                                       max_label_size=0,
                                       repeat=False,
                                       shuffle_mb=0)
    assert dataset_obj.shape == Gs.output_shape[1:]

    for image_idx in range(num_images):
        print('Projecting image %d/%d ...' % (image_idx, num_images))
        images, _labels = dataset_obj.get_minibatch_np(1)
        images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
        print("read image from database:", images.shape)
        import cv2
        cv2.imwrite("test_project_real_images_image_from_db.png", images)
        project_image(proj,
                      targets=images,
                      png_prefix=dnnlib.make_run_dir_path('image%04d-' %
                                                          image_idx),
                      num_snapshots=num_snapshots)
Ejemplo n.º 13
0
def project_real_images(network_pkl, dataset_name, data_dir, num_images,
                        num_snapshots):
    print('Loading networks from "%s"...' % network_pkl)
    _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    proj = projector.Projector()
    proj.set_network(Gs)

    print('Loading images from "%s"...' % dataset_name)
    dataset_obj = dataset.load_dataset(data_dir=data_dir,
                                       tfrecord_dir=dataset_name,
                                       max_label_size=0,
                                       repeat=False,
                                       shuffle_mb=0)
    assert dataset_obj.shape == Gs.output_shape[
        1:], "%sexpected shape %s, got %s%s" % (
            dnnlib.util.Col.RB, Gs.output_shape[1:], dataset_obj.shape,
            dnnlib.util.Col.AU)

    for image_idx in range(num_images):
        print('Projecting image %d/%d ...' % (image_idx, num_images))
        images, _labels = dataset_obj.get_minibatch_np(1)
        images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
        project_image(proj,
                      targets=images,
                      png_prefix=dnnlib.make_run_dir_path('image%04d-' %
                                                          image_idx),
                      num_snapshots=num_snapshots)
Ejemplo n.º 14
0
def project_real_images(submit_config, network_pkl, dataset_name, data_dir,
                        num_images, num_snapshots):
    print('Loading networks from "%s"...' % network_pkl)
    _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    proj = projector.Projector()
    proj.verbose = submit_config.verbose
    proj.set_network(Gs)

    print('Loading images from "%s"...' % dataset_name)
    dataset_obj = dataset.load_dataset(data_dir=data_dir,
                                       tfrecord_dir=dataset_name,
                                       max_label_size=0,
                                       repeat=False,
                                       shuffle_mb=0)
    print('dso shape: ' + str(dataset_obj.shape) + ' vs gs shape: ' +
          str(Gs.output_shape[1:]))
    assert dataset_obj.shape == Gs.output_shape[1:]

    for image_idx in range(num_images):
        print('Projecting image %d/%d ...' % (image_idx, num_images))
        images, _labels = dataset_obj.get_minibatch_np(1)
        images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
        project_image(proj,
                      targets=images,
                      png_prefix=dnnlib.make_run_dir_path('image%04d-' %
                                                          image_idx),
                      num_snapshots=num_snapshots)
Ejemplo n.º 15
0
def project_image(proj, src_file, dst_dir, tmp_dir, video=False):

    data_dir = '%s/dataset' % tmp_dir
    if os.path.exists(data_dir):
        shutil.rmtree(data_dir)
    image_dir = '%s/images' % data_dir
    tfrecord_dir = '%s/tfrecords' % data_dir
    os.makedirs(image_dir, exist_ok=True)
    shutil.copy(src_file, image_dir + '/')
    dataset_tool.create_from_images_raw(tfrecord_dir, image_dir, shuffle=0)
    dataset_obj = dataset.load_dataset(
        data_dir=data_dir, tfrecord_dir='tfrecords',
        max_label_size=0, repeat=False, shuffle_mb=0
    )

    print('Projecting image "%s"...' % os.path.basename(src_file))
    images, _labels = dataset_obj.get_minibatch_np(1)
    images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
    proj.start(images)
    if video:
        video_dir = '%s/video' % tmp_dir
        os.makedirs(video_dir, exist_ok=True)
    while proj.get_cur_step() < proj.num_steps:
        print('\r%d / %d ... ' % (proj.get_cur_step(), proj.num_steps), end='', flush=True)
        proj.step()
        if video:
            filename = '%s/%08d.png' % (video_dir, proj.get_cur_step())
            misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
    print('\r%-30s\r' % '', end='', flush=True)

    os.makedirs(dst_dir, exist_ok=True)
    filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.png')
    misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
    filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.npy')
    np.save(filename, proj.get_dlatents()[0])
Ejemplo n.º 16
0
def prepro_imgs(frames, drange=[0, 255], nchw_to_nhwc=True):
    """Converts NCHW frame tensor in float [-1, 1] to NHWC tensor in uint8 [0, 255]"""
    frames = adjust_dynamic_range(frames, [-1, 1], drange)
    frames = np.rint(frames).clip(drange[0],
                                  drange[1])  # The rounding is important!
    if nchw_to_nhwc:
        frames = np.transpose(frames, (0, 2, 3, 1)).astype(np.uint8)
    return frames
Ejemplo n.º 17
0
def process_reals(x, labels, mirror_augment, drange_data, drange_net):
    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope('MirrorAugment'):
            x = tf.where(tf.random_uniform([tf.shape(x)[0]]) < 0.5, x, tf.reverse(x, [3]))
    return x, labels
Ejemplo n.º 18
0
    def generate_batch_factor_code(self, ground_truth_data,
                                   representation_function, num_points,
                                   random_state, batch_size):
        """Sample a single training sample based on a mini-batch of ground-truth data.

        Args:
            ground_truth_data: GroundTruthData to be sampled from.
            representation_function: Function that takes observation as input and
              outputs a representation.
            num_points: Number of points to sample.
            random_state: Numpy random state used for randomness.
            batch_size: Batchsize to sample points.

        Returns:
            representations: Codes (num_codes, num_points)-np array.
            factors: Factors generating the codes (num_factors, num_points)-np array.
        """
        representations = None
        factors = None
        i = 0
        while i < num_points:
            num_points_iter = min(num_points - i, batch_size)
            current_factors, current_observations = \
                ground_truth_data.sample(num_points_iter, random_state)
            current_observations = misc.adjust_dynamic_range(
                current_observations, [-1., 1.], self.drange_net)
            if i == 0:
                factors = current_factors
                # representations = representation_function(current_observations)
                if self.has_label_place:
                    representations = get_return_v(
                        representation_function.run(
                            current_observations,
                            np.zeros([current_observations.shape[0], 0]),
                            is_validation=True), 1)
                else:
                    representations = get_return_v(
                        representation_function.run(current_observations,
                                                    is_validation=True), 1)
            else:
                factors = np.vstack((factors, current_factors))
                if self.has_label_place:
                    representations_i = get_return_v(
                        representation_function.run(
                            current_observations,
                            np.zeros([current_observations.shape[0], 0]),
                            is_validation=True), 1)
                else:
                    representations_i = get_return_v(
                        representation_function.run(current_observations,
                                                    is_validation=True), 1)
                # representations = np.vstack((representations,
                # representation_function(
                # current_observations)))
                representations = np.vstack(
                    (representations, representations_i))
            i += num_points_iter
        return np.transpose(representations), np.transpose(factors)
Ejemplo n.º 19
0
def process_reals(x, drange_data, drange_net, mirror_augment):
    with tf.name_scope("DynamicRange"):
        x = tf.cast(x, tf.float32)
        x.set_shape([None, 3, None, None])
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope("MirrorAugment"):
            x = tf.where(tf.random_uniform([tf.shape(x)[0]]) < 0.5, x, tf.reverse(x, [3]))
    return x
Ejemplo n.º 20
0
    def sweep_fwd_bcw(start_idx, end_idx, opt_args, forward=True, prefix='', latest_img=None):
                
        if forward:
            assert start_idx <= end_idx
            num_images = end_idx - start_idx + 1
            traveral_order = np.arange(start_idx, end_idx + 1)
        else:
            assert start_idx >= end_idx
            num_images = start_idx - end_idx + 1
            traversal_order = np.arange(start_idx, end_idx - 1, -1)
                        
        for image_idx in traversal_order:
            print('Projecting image %s %d/%d ...' % (prefix, image_idx, num_images))
            images = skimage.img_as_float(skimage.io.imread(img_files[image_idx]))
            images = np.expand_dims(np.transpose(images, (2, 0, 1)), 0)
            images = misc.adjust_dynamic_range(images, [0, 1], [-1, 1])
            
            if opt_args.encourage_advected_last_frame and latest_img is not None:
                exrfile = OpenEXR.InputFile(os.path.join(data_dir, dataset_name, 'raw', '%04d.exr' % (image_idx + 1)))
                if forward:
                    speed_vectors = channels_to_ndarray(exrfile, ['vector_x.V', 'vector_y.V'])
                else:
                    speed_vectors = -channels_to_ndarray(exrfile, ['vector_z.V', 'vector_a.V'])
                    
                if speed_vectors.shape[0] != latest_img.shape[2] or speed_vectors.shape[1] != latest_img.shape[3]:
                    if exr_pl is None:
                        exr_pl = np.zeros((latest_img.shape[2], latest_img.shape[3], 2))
                        
                    if xv is None or yv is None:
                        xv, yv = np.meshgrid(np.arange(latest_img.shape[2]), np.arange(latest_img.shape[3]), indexing='ij')
                    
                    h_diff = latest_img.shape[2] - speed_vectors.shape[0]
                    w_diff = latest_img.shape[3] - speed_vectors.shape[1]
                    exr_pl[h_diff // 2: h_diff // 2 + speed_vectors.shape[0], w_diff // 2: w_diff // 2 + speed_vectors.shape[1], :] = speed_vectors[:, :, :]
                    speed_vectors = exr_pl
                    
                advected_img, _ = speed_vector.advect_img(latest_img, -speed_vectors[:, :, 0], -speed_vectors[:, :, 1], xv, yv, is_tensor=True)
                
                if opt_args.zero_constrain_mask_boundary:
                    nonzero_speed = (speed_vectors[:, :, 0] != 0) * (speed_vectors[:, :, 1] != 0)
                    dilation_r = np.ceil(np.max(np.abs(speed_vectors))) + 1
                    selem = skimage.morphology.disk(dilation_r)
                    dilated_speed = skimage.morphology.dilation(nonzero_speed, selem)
                    zero_constrain_mask = dilated_speed
                    zero_constrain_mask[nonzero_speed] = 0
                    
                if opt_args.mask_speed_vector:
                    advect_speed_mask = np.ones((speed_vectors.shape[0], speed_vectors.shape[1]))
                    advect_speed_zero_idx = (speed_vectors[:, :, 0] == 0) * (speed_vectors[:, :, 1] == 0)
                    advect_speed_mask[advect_speed_zero_idx] = opt_args.advected_still_scale

                    if zero_constrain_mask_boundary:
                        advect_speed_mask[zero_constrain_mask] = 0

                    advect_speed_mask = np.expand_dims(np.expand_dims(advect_speed_mask, 0), 0)
Ejemplo n.º 21
0
def project():
    steps = int(flask.request.args.get("steps", 1000))
    yieldInterval = int(flask.request.args.get("yieldInterval", 10))
    # regularizeNoiseWeight = float(flask.request.args.get('regularizeNoiseWeight', 1e5))

    imageFile = flask.request.files.get("image")
    if not imageFile:
        flask.abort(400, "image field is requested.")

    global model_name
    fetched_model_name = flask.request.args.get("model_name", "ffhq")
    print(fetched_model_name, model_name)
    model_name = fetched_model_name

    Gs, _ = loadGs()
    image = PIL.Image.open(imageFile.stream).resize(
        (Gs.output_shape[2], Gs.output_shape[3]), PIL.Image.ANTIALIAS)

    image_array = np.array(image)[:, :, :3].swapaxes(0, 2).swapaxes(1, 2)
    image_array = misc.adjust_dynamic_range(image_array, [0, 255], [-1, 1])

    # print('shape:', image_array.shape)

    def gen():
        proj = loadProjector()
        # proj.regularize_noise_weight = regularizeNoiseWeight
        proj.start([image_array])
        for step in proj.runSteps(steps):
            print("\rProjecting: %d / %d" % (step, steps), end="", flush=True)

            if step % yieldInterval == 0:
                dlatents = proj.get_dlatents()
                images = proj.get_images()
                pilImage = misc.convert_to_pil_image(
                    misc.create_image_grid(images), drange=[-1, 1])

                fp = io.BytesIO()
                pilImage.save(fp, PIL.Image.registered_extensions()[".png"])

                imgUrl = "data:image/png;base64,%s" % base64.b64encode(
                    fp.getvalue()).decode("ascii")

                # latentsList = list(dlatents.reshape((-1, dlatents.shape[2])))
                # latentCodes = list(map(lambda latents: latentCode.encodeFloat32(latents).decode('ascii'), latentsList))
                latentCodes = latentCode.encodeFixed16(
                    dlatents.flatten()).decode("ascii")

                yield json.dumps(
                    dict(step=step, img=imgUrl,
                         latentCodes=latentCodes)) + "\n\n"

        print("\rProjecting finished.%s" % (" " * 8))

    return flask.Response(gen(), mimetype="text/plain")
Ejemplo n.º 22
0
def process_reals(x, mirror_augment, drange_data, drange_net):
    with tf.name_scope('ProcessReals'):
        with tf.name_scope('DynamicRange'):
            x = tf.cast(x, tf.float32)
            x = misc.adjust_dynamic_range(x, drange_data, drange_net)
        if mirror_augment:
            with tf.name_scope('MirrorAugment'):
                s = tf.shape(x)
                mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
                mask = tf.tile(mask, [1, s[1], s[2], s[3]])
                x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
        return x
def process_reals(x, labels, mirror_augment, drange_data, drange_net):
    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope('MirrorAugment'):
            random_vector = tf.random_uniform([tf.shape(x)[0]]) < 0.5
            x = tf.where(random_vector, x, tf.reverse(x, [3]))
            swaps = tf.constant([0, 7, 6, 5, 4, 3, 2, 1])
            mirrored_labels = tf.gather(labels, swaps, axis=1)
            labels = tf.where(random_vector, labels, mirrored_labels)
    return x, labels
Ejemplo n.º 24
0
def projectImage(Gs, projc, img_fn):
    img = PIL.Image.open(img_fn).convert("RGB")
    img = misc.pad_min_square(img)
    img = img.resize((Gs.output_shape[2], Gs.output_shape[3]), PIL.Image.ANTIALIAS) # resize mode?
    img = np.asarray(img)

    channels = img.shape[1] if img.ndim == 3 else 1
    img = img[np.newaxis, :, :] if channels == 1 else img.transpose([2, 0, 1]) # HW => CHW # HWC => CHW

    assert img.shape == tuple(Gs.output_shape[1:])
    img = misc.adjust_dynamic_range(img, [0, 255], [-1, 1])[np.newaxis]
    return run_projector.project_img(projc, img) # w.append()
Ejemplo n.º 25
0
def process_reals(x, labels, lod, mirror_augment, drange_data, drange_net):
    rotation_offset = 108
    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope('MirrorAugment'):
            random_vector = tf.random_uniform([tf.shape(x)[0]]) < 0.5
            x = tf.where(random_vector, x, tf.reverse(x, [3]))
            rotation_cos = tf.expand_dims(labels[:, rotation_offset], axis=-1)
            rotation_sin = tf.expand_dims(labels[:, rotation_offset + 1],
                                          axis=-1)
            angle = tf.atan2(rotation_sin, rotation_cos)
            new_rotation_cos = tf.cos(angle)
            new_rotation_sin = tf.sin(angle) * -1
            mirrored_labels = tf.concat([
                labels[:, :rotation_offset], new_rotation_cos,
                new_rotation_sin, labels[:, rotation_offset + 2:]
            ],
                                        axis=1)
            labels = tf.where(random_vector, labels, mirrored_labels)
    with tf.name_scope('BalanceLabels'):
        zero_rotation = tf.expand_dims(tf.zeros([tf.shape(x)[0]]), axis=-1)
        removed_labels = tf.concat([
            labels[:, :rotation_offset], zero_rotation, zero_rotation,
            labels[:, rotation_offset + 2:]
        ],
                                   axis=1)
        condition = tf.equal(labels[:, 108], 0.7071)
        random_vector = tf.random_uniform([tf.shape(x)[0]]) < 0.5
        remove_condition = tf.logical_and(condition, random_vector)
        labels = tf.where(remove_condition, removed_labels, labels)

    with tf.name_scope(
            'FadeLOD'
    ):  # Smooth crossfade between consecutive levels-of-detail.
        s = tf.shape(x)
        y = tf.reshape(x, [-1, s[1], s[2] // 2, 2, s[3] // 2, 2])
        y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
        y = tf.tile(y, [1, 1, 1, 2, 1, 2])
        y = tf.reshape(y, [-1, s[1], s[2], s[3]])
        x = tflib.lerp(x, y, lod - tf.floor(lod))
    with tf.name_scope(
            'UpscaleLOD'
    ):  # Upscale to match the expected input/output size of the networks.
        s = tf.shape(x)
        factor = tf.cast(2**tf.floor(lod), tf.int32)
        x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
        x = tf.tile(x, [1, 1, 1, factor, 1, factor])
        x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
    return x, labels
def process_reals(x, labels, lod, mirror_augment, drange_data, drange_net):
    rotation_offset = 108

    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    if mirror_augment:
        with tf.name_scope('MirrorAugment'):
            random_vector = tf.random_uniform([tf.shape(x)[0]]) < 0.5
            x = tf.where(random_vector, x, tf.reverse(x, [3]))
            indices_first = tf.range(rotation_offset)
            swaps = tf.constant([0, 7, 6, 5, 4, 3, 2, 1]) + rotation_offset
            indices_last = tf.range(rotation_offset + 8, tf.shape(labels)[1])
            indices = tf.concat([indices_first, swaps, indices_last], axis=0)
            mirrored_labels = tf.gather(labels, indices, axis=1)
            labels = tf.where(random_vector, labels, mirrored_labels)
    with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
        s = tf.shape(x)
        y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
        y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
        y = tf.tile(y, [1, 1, 1, 2, 1, 2])
        y = tf.reshape(y, [-1, s[1], s[2], s[3]])
        x = tflib.lerp(x, y, lod - tf.floor(lod))
    with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
        s = tf.shape(x)
        factor = tf.cast(2 ** tf.floor(lod), tf.int32)
        x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
        x = tf.tile(x, [1, 1, 1, factor, 1, factor])
        x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
    with tf.name_scope('InterpolateLabels'):
        batch_size = 4

        rotations = labels[:, rotation_offset:rotation_offset + 8]
        rotation_index = tf.cast(tf.argmax(rotations, axis=1), dtype=tf.int32)
        rotation_index_45 = tf.mod(rotation_index, 2)
        ones = tf.ones([batch_size])
        rotation_shift = tf.cast(
            tf.where(tf.random_uniform(shape=[batch_size], minval=-1, maxval=1) > 0, ones, ones * -1), dtype=tf.int32)
        rotation_shift_45 = rotation_shift * rotation_index_45
        new_rotation_index = tf.mod(rotation_index + rotation_shift_45, 8)
        new_rotation = tf.cast(tf.one_hot(new_rotation_index, 8), dtype=tf.int32)
        new_rotation = new_rotation * tf.cast(
            tf.reduce_max(labels[:, rotation_offset:rotation_offset + 8], axis=-1, keepdims=True), dtype=tf.int32)
        new_rotation = tf.cast(new_rotation, dtype=tf.float32)
        labels_copy = tf.identity(labels)
        labels_interpolate = tf.concat(
            [labels_copy[:, :rotation_offset], new_rotation, labels_copy[:, rotation_offset + 8:]], axis=-1)
        interpolation_mag = tf.random_uniform(shape=[batch_size, 1])
        labels = labels * interpolation_mag + labels_interpolate * (1 - interpolation_mag)

    return x, labels
Ejemplo n.º 27
0
def project_real_images(network_pkl, dataset_name, data_dir, num_images,
    num_snapshots, num_steps, save_snapshots=False, save_latents=False,
    save_umap=False, save_tiles=False):
    print('Loading networks from "%s"...' % network_pkl)
    _G, _D, Gs = pretrained_networks.load_networks(network_pkl)
    proj = projector.Projector()
    proj.set_network(Gs)
    proj.num_steps = num_steps

    print('Loading images from "%s"...' % dataset_name)
    dataset_obj = dataset.load_dataset(data_dir=data_dir, tfrecord_dir=dataset_name, max_label_size=0, repeat=False, shuffle_mb=0)
    assert dataset_obj.shape == Gs.output_shape[1:]

    latents = np.zeros((num_images, Gs.input_shape[1]), dtype=np.float32)
    tiles = [None] * num_images
    for image_idx in range(num_images):
        print('Projecting image %d/%d ...' % (image_idx, num_images))
        images, _labels = dataset_obj.get_minibatch_np(1)
        tiles[image_idx] = images[0, ...].transpose(1, 2, 0)
        images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
        latents[image_idx, ...] = project_image(proj, targets=images,
            png_prefix=dnnlib.make_run_dir_path('image%04d-' % image_idx),
            num_snapshots=num_snapshots, save_snapshots=save_snapshots)

        if save_latents:
            filename = dnnlib.make_run_dir_path('real_image_latent_{:06d}'.format(image_idx))
            np.save(filename, latents[image_idx, ...])


    if save_latents:
        filename = dnnlib.make_run_dir_path('real_image_latents.npy')
        np.save(filename, latents)

    if save_umap:
        reducer = umap.UMAP()
        embeddings = reducer.fit_transform(latents)
        filename = dnnlib.make_run_dir_path('real_image_umap.json')
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump(embeddings.tolist(), f, ensure_ascii=False)

    if save_tiles:
        tiles_prefix = dnnlib.make_run_dir_path('real_tile_solid')
        misc.save_texture_grid(tiles, tiles_prefix)

        textures_prefix = dnnlib.make_run_dir_path('real_texture_solid')
        textures = [misc.make_white_square() for _ in range(len(tiles))]
        misc.save_texture_grid(textures, textures_prefix)

        filename = dnnlib.make_run_dir_path('labels.json')
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump([0.0] * len(tiles), f, ensure_ascii=False)
Ejemplo n.º 28
0
def get_reals(training_set, drange_data, drange_net, label_start, label_end,
              minibatch_size):
    x, labels = training_set.get_minibatch_tf()
    labels = labels[:, label_start:label_end]
    sort_index = tf.cast(tf.argsort(tf.reduce_sum(labels, axis=-1),
                                    axis=0,
                                    direction='DESCENDING'),
                         dtype=tf.int32)
    labels = tf.gather(labels, sort_index, axis=0)[:minibatch_size]
    x = tf.gather(x, sort_index, axis=0)[:minibatch_size]
    with tf.name_scope('DynamicRange'):
        x = tf.cast(x, tf.float32)
        x = misc.adjust_dynamic_range(x, drange_data, drange_net)
    return x, labels
Ejemplo n.º 29
0
def preprocess(file_path):
    # print(file_path)
    img = np.asarray(PIL.Image.open(file_path))

    # Preprocessing from dataset_tool.create_from_images
    img = img.transpose([2, 0, 1])  # HWC => CHW
    # img = np.expand_dims(img, axis=0)
    img = img.reshape((1, 3, 512, 512))

    # Preprocessing from training_loop.process_reals
    img = adjust_dynamic_range(data=img,
                               drange_in=[0, 255],
                               drange_out=[-1.0, 1.0])
    return img
Ejemplo n.º 30
0
def project_image(proj, src_file, dst_dir, tmp_dir, video=False):
 
    data_dir = '%s/dataset' % tmp_dir  # ./stylegan2-tmp/dataset
    if os.path.exists(data_dir):
        shutil.rmtree(data_dir)
    image_dir = '%s/images' % data_dir  # ./stylegan2-tmp/dataset/images
    tfrecord_dir = '%s/tfrecords' % data_dir  # ./stylegan2-tmp/dataset/tfrecords
    os.makedirs(image_dir, exist_ok=True)
    # 将源图片文件copy到./stylegan2-tmp/dataset/images下
    shutil.copy(src_file, image_dir + '/')
    # 在./stylegan2-tmp/dataset/tfrecords下生成tfrecord临时文件
    # tfrecord临时文件序列化存储了不同lod下的图像的shape和数据
    # 举例,如果图像是1024x1024,则tfr_file命名从10--2,如:tfrecords-r10.tfrecords...tfrecords-r05.tfrecords...
    dataset_tool.create_from_images(tfrecord_dir, image_dir, shuffle=0)
    # TFRecordDataset类在“dataset.py”中定义,从一组.tfrecords文件中加载数据集到dataset_obj
    # load_dataset是个helper函数,用于构建dataset对象(在TFRecordDataset类创建对象实例时完成)
    dataset_obj = dataset.load_dataset(
        data_dir=data_dir, tfrecord_dir='tfrecords',
        max_label_size=0, repeat=False, shuffle_mb=0
    )
 
    # 生成用于优化迭代的目标图像(组)
    print('Projecting image "%s"...' % os.path.basename(src_file))
    # 取下一个minibatch=1作为Numpy数组
    images, _labels = dataset_obj.get_minibatch_np(1)
    # 把images的取值从[0. 255]区间调整到[-1, 1]区间
    images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
    # Projector初始化:start
    proj.start(images)
    if video:
        video_dir = '%s/video' % tmp_dir
        os.makedirs(video_dir, exist_ok=True)
    while proj.get_cur_step() < proj.num_steps:
        print('\r%d / %d ... ' % (proj.get_cur_step(), proj.num_steps), end='', flush=True)
        # Projector优化迭代:step
        proj.step()
        # 如果配置了video选项,将优化过程图像存入./ stylegan2 - tmp / video
        if video:
            filename = '%s/%08d.png' % (video_dir, proj.get_cur_step())
            misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
    print('\r%-30s\r' % '', end='', flush=True)
 
    # 在目的地目录中保存图像,保存dlatents文件
    os.makedirs(dst_dir, exist_ok=True)
    filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.png')
    misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
    filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.npy')
    np.save(filename, proj.get_dlatents()[0])