def run_conflict_detection(config):

    # Create output folder
    output_dir = config.output_dir
    output_dir = os.path.join(output_dir, 'detected_conflict')
    os.makedirs(output_dir, exist_ok=True)

    # 读取轨迹
    traj_list = Trajectory.read_trajectory_panda_csv(config.traj)

    # Time,读取时刻数组
    list_times_ms_path = config.time
    if list_times_ms_path == '':
        list_times_ms_path = config.traj.replace('traj.csv', 'time_traj.csv')
    if not os.path.isfile(list_times_ms_path):
        print(
            '[ERROR]: Traj time file not found: {}'.format(list_times_ms_path))
        return
    list_times_ms = trajutil.read_time_list_csv(list_times_ms_path)

    # 参数初始化,从0时刻至视频结束均检测冲突
    frame_index = 0
    # 所有时刻所有的冲突
    conflict_list = []

    # 读取每一帧画面的轨迹,进行冲突检测
    while True:

        #######################################################
        ## detect conflict
        #######################################################

        # Get Time ms
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_times_ms) -
                                    1)  # 剪辑返回的是帧序,保证帧序在0到最大之间
        time_ms = list_times_ms[frame_index]  # 读取当前的时刻,用于遍历所有存在轨迹的时间段

        # 两两组合下所有两条轨迹组合遍历检测冲突
        for i, traj_i in enumerate(traj_list):
            # i 从 0 到 n-2 即 遍历 轨迹1 至轨迹 n - 1
            if i >= 0 and i <= len(traj_list) - 2:
                # 判断当前时刻 轨迹 i 若存在轨迹点,则继续
                if not (traj_i.get_point_at_timestamp(time_ms) is None):

                    for j, traj_j in enumerate(traj_list):

                        if j >= i + 1 and j <= len(traj_list) - 1:
                            # 判断当前时刻 轨迹 j 若存在轨迹点, 则继续
                            if not (traj_j.get_point_at_timestamp(time_ms) is
                                    None):

                                # 修改冲突检测的函数

                                conflict_point, TTC, conflict_type = two_vehicle_conflict_detect(
                                    traj_i, traj_j, time_ms)

                                # 若存在冲突(TTC 不为 9999), 保存当前冲突到 list
                                if TTC != 9999 and conflict_point.x != 0 and conflict_point.y != 0:
                                    # 把当前的冲突数据 写入 Conflict 类
                                    tmp_data = Conflict(time_ms, conflict_point.x, conflict_point.y,\
                                                           TTC, traj_i.get_id(), traj_j.get_id(), conflict_type)
                                    # 将冲突写入数组
                                    conflict_list.append(tmp_data)
                                    # 滴滴发出声音,报警有冲突
                                    winsound.Beep(500,
                                                  500)  # 第一个参数是音调 ,第二个参数是持续时间
                                    time.sleep(0.5)
                                    winsound.Beep(500, 500)
                                    print(time_ms,'ms时,轨迹',traj_i.get_id(),'与轨迹',traj_j.get_id(),\
                                          '存在冲突!冲突类型为' + conflict_type + '\n\n\n')

        # 完成所有时刻检测
        if frame_index == (len(list_times_ms) - 1):
            name_prefix = 'conflict_detect'
            # 完成所有时刻冲突检测后保存冲突list到csv
            Conflict.write_conflict_panda_csv(output_dir, name_prefix,
                                              conflict_list, list_times_ms)
            print('冲突检测完成!请查看文件')
            break
        # 当前时刻的冲突检测完成, 进行下一个时刻的检测
        else:
            frame_index += 1
def run_inspect_traj(config):

    # Create output folder
    output_dir = config.output_dir
    output_dir = os.path.join(output_dir, 'traj_inspect')
    os.makedirs(output_dir, exist_ok=True)

    # Create output sub-folder
    image_raw_saving_dir = os.path.join(output_dir, 'img_raw')
    image_annoted_saving_dir = os.path.join(output_dir, 'img_annoted')
    image_hd_map_saving_dir = os.path.join(output_dir, 'img_hdmap')
    traj_saving_dir = os.path.join(output_dir, 'csv')

    os.makedirs(image_raw_saving_dir, exist_ok=True)
    os.makedirs(image_annoted_saving_dir, exist_ok=True)
    os.makedirs(image_hd_map_saving_dir, exist_ok=True)
    os.makedirs(traj_saving_dir, exist_ok=True)

    # Save the cfg file with the output:
    try:
        cfg_save_path = os.path.join(output_dir, 'inspect_traj_cfg.json')
        with open(cfg_save_path, 'w') as json_file:
            config_dict = vars(config)
            json.dump(config_dict, json_file, indent=4)
    except Exception as e:
        print('[ERROR]: Error saving config file in output folder:\n')
        print('{}'.format(e))
        return

    # Check if det data available:
    det_data_available = os.path.isdir(config.det_dir)
    print('Detection data: {}'.format(det_data_available))

    det_asso_data_available = os.path.isdir(config.det_asso_dir)
    print('Detection Association data: {}'.format(det_asso_data_available))

    track_merge_data_available = os.path.isfile(config.track_merge)
    print('Detection Merge data: {}'.format(track_merge_data_available))

    # Check if trajectory ingore exist:
    traj_ingore_path = config.traj_ignore
    if traj_ingore_path == '':
        traj_ingore_path = config.traj.replace('traj.csv', 'traj_ignore.csv')

    if not os.path.isfile(traj_ingore_path):
        print('[ERROR]: Trajectory ignore file not found: {}'.format(
            traj_ingore_path))
        return
    list_traj_ignore = trajutil.read_traj_ignore_list_csv(traj_ingore_path)

    # Trajectory reverse exist:
    traj_reverse_path = config.traj_reverse
    if traj_reverse_path == '':
        traj_reverse_path = config.traj.replace('traj.csv', 'traj_reverse.csv')

    if not os.path.isfile(traj_reverse_path):
        print('[ERROR]: Trajectory reverse file not found: {}'.format(
            traj_reverse_path))
        return

    # Agent type correction
    agenttype_corr_path = config.traj_type_corr
    if agenttype_corr_path == '':
        agenttype_corr_path = config.traj.replace('traj.csv',
                                                  'traj_type_corr.csv')

    if not os.path.isfile(agenttype_corr_path):
        print('[ERROR]: Agent type correction file not found: {}'.format(
            agenttype_corr_path))
        return
    list_agenttype_correct = AgentTypeCorrect.from_csv(agenttype_corr_path)

    # Time ignore
    time_ignore_path = config.traj_time_ignore
    if time_ignore_path == '':
        time_ignore_path = config.traj.replace('traj.csv', 'time_ignore.csv')

    if not os.path.isfile(time_ignore_path):
        print('[ERROR]: Traj time ignore file not found: {}'.format(
            time_ignore_path))
        return
    time_ignore_list = TimeIgnore.from_csv(time_ignore_path)

    # Time
    list_times_ms_path = config.time
    if list_times_ms_path == '':
        list_times_ms_path = config.traj.replace('traj.csv', 'time_traj.csv')
    if not os.path.isfile(list_times_ms_path):
        print(
            '[ERROR]: Traj time file not found: {}'.format(list_times_ms_path))
        return
    list_times_ms = trajutil.read_time_list_csv(list_times_ms_path)

    # Trajectory file
    if not os.path.isfile(config.traj):
        print('[ERROR]: Traj file not found: {}'.format(config.traj))
        return
    print('Reading trajectories:')
    traj_list = Trajectory.read_trajectory_panda_csv(config.traj)

    # Traj not merged
    traj_not_merged_csv_path = config.traj_not_merged
    if traj_not_merged_csv_path == '':
        traj_not_merged_csv_path = config.traj.replace('traj.csv',
                                                       'traj_not_merged.csv')

    if not os.path.isfile(traj_not_merged_csv_path):
        print('[ERROR]: Traj not merged file not found: {}'.format(
            traj_not_merged_csv_path))
        return
    print('Reading trajectories not merged:')
    traj_list_not_merged = Trajectory.read_trajectory_panda_csv(
        traj_not_merged_csv_path)

    # Open objects
    cam_model = CameraModel.read_from_yml(config.camera_street)
    det_zone_FNED = det_zone.DetZoneFNED.read_from_yml(config.det_zone_fned)

    # Ignore trajectories that are smaller than min_length
    list_traj_ignore_automatic = []
    for traj in list(traj_list):
        if traj.get_length() < config.min_length:
            if not (traj.get_id() in list_traj_ignore):
                list_traj_ignore_automatic.append(traj.get_id())
                print('Ignoring Traj {} length {}'.format(
                    traj.get_id(), traj.get_length()))

    sat_view_available = False
    sat_view_enable = False
    if os.path.isfile(config.camera_sat_img) and os.path.isfile(
            config.camera_sat):
        cam_model_sat = CameraModel.read_from_yml(config.camera_sat)

        image_sat = cv2.imread(os.path.join(config.camera_sat_img))
        sat_view_available = True

    # Check if image is directoty
    image_in_dir = os.path.isdir(config.image_dir)

    # If image directory, open list of images
    if image_in_dir:
        list_img_file = os.listdir(config.image_dir)
        list_img_file.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))

    # Else open the unique image
    else:
        image = cv2.imread(config.image_dir)

    hd_map_mode = False
    if os.path.isfile(config.hd_map):
        hd_map_mode = True
        hd_map = HDmap.from_csv(config.hd_map)

        cam_model_hdmap, image_hdmap = hd_map.create_view()

        image_hdmap = hd_map.display_on_image(image_hdmap, cam_model_hdmap)

    # Shrink det zone for complete
    det_zone_FNED_complete = None
    if config.shrink_zone < 1:
        det_zone_FNED_complete = det_zone_FNED.shrink_zone(config.shrink_zone)
        for traj in traj_list:
            if not traj.check_is_complete(det_zone_FNED_complete):

                if not (traj.get_id() in list_traj_ignore) and not (
                        traj.get_id() in list_traj_ignore_automatic):

                    print('Track: {} time_ms: {} not complete'.format(
                        traj.get_id(),
                        traj.get_start_trajoint().time_ms))
    elif config.shrink_zone > 1:
        det_zone_FNED_complete = det_zone_FNED.shrink_zone(config.shrink_zone)

    # Get name sequence
    name_sequence = os.path.basename(config.traj)
    name_sequence = name_sequence.split('.')[0]
    name_sequence = name_sequence.replace('_traj', '')

    # Remove in the det_zone ignore
    det_zone_ignore_list = []

    for det_zone_ignore_path in config.det_zone_ignore:
        if os.path.isfile(det_zone_ignore_path):
            det_zone_FNED_ignore = det_zone.DetZoneFNED.read_from_yml(
                det_zone_ignore_path)
            det_zone_ignore_list.append(det_zone_FNED_ignore)

    only_complete = False
    skip_value = 1
    det_view_enable = False
    frame_index = 0
    saving_mode = False

    print_instructions()
    while True:

        #######################################################
        ## Update Information
        #######################################################

        # Read traj ignore list:
        time_ignore_list = TimeIgnore.from_csv(time_ignore_path)
        list_traj_ignore_timeignore = []
        # if len(time_ignore_list) > 0:
        #     for traj in traj_list:
        #         if traj.check_startend_time_ignore(time_ignore_list):
        #             list_traj_ignore_timeignore.append(traj.get_id());

        #######################################################
        ## Update Information
        #######################################################

        # Read traj ignore list:
        list_traj_ignore = trajutil.read_traj_ignore_list_csv(traj_ingore_path)

        # Read agent corrections
        list_agenttype_correct = AgentTypeCorrect.from_csv(agenttype_corr_path)
        for agenttype_correct in list_agenttype_correct:
            traj = trajutil.get_traj_in_list(traj_list,
                                             agenttype_correct.track_id)
            if not (traj is None):
                traj.set_agent_type(agenttype_correct.agent_type)

        #######################################################
        ## Show Trajectories
        #######################################################

        # Get Time ms
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_img_file) - 1)
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_times_ms) - 1)
        time_ms = list_times_ms[frame_index]

        if image_in_dir:
            img_file_name = list_img_file[frame_index]
            image_current = cv2.imread(
                os.path.join(config.image_dir, img_file_name))
        else:
            # Copy image
            image_current = image

        if not (image_current is None):

            print('Showing: frame_id: {} time_ms: {} image: {}'.format(
                frame_index, time_ms, img_file_name))

            display_traj = not TimeIgnore.check_time_inside_list(
                time_ignore_list, time_ms)

            # Display traj
            det_zone_FNED_list = [det_zone_FNED, det_zone_FNED_complete
                                  ] + det_zone_ignore_list
            image_current_traj, det_track_list_current = display_traj_on_image(
                time_ms,
                cam_model,
                image_current,
                traj_list,
                display_traj=display_traj,
                traj_ignore_list_1=list_traj_ignore,
                traj_ignore_list_2=list_traj_ignore_automatic,
                traj_ignore_list_3=list_traj_ignore_timeignore,
                det_zone_FNED_list=det_zone_FNED_list,
                complete_marker=config.shrink_zone < 1)

            # Show image
            cv2.imshow('Trajectory visualizer', image_current_traj)
            cv2.setMouseCallback("Trajectory visualizer",
                                 click_hd_merged,
                                 param=[det_track_list_current])

            # Display traj
            image_current_traj_not_merged, det_track_list_not_merged = display_traj_on_image(
                time_ms,
                cam_model,
                image_current,
                traj_list_not_merged,
                det_zone_FNED_list=det_zone_FNED_list)

            # Show image
            cv2.imshow('Trajectory not merged', image_current_traj_not_merged)
            cv2.setMouseCallback("Trajectory not merged",
                                 click_hd_merged,
                                 param=[det_track_list_not_merged])

            if sat_view_available:

                if sat_view_enable:

                    # Display traj
                    image_sat_current_not_merged, _ = display_traj_on_image(
                        time_ms,
                        cam_model_sat,
                        image_sat,
                        traj_list_not_merged,
                        det_zone_FNED_list=det_zone_FNED_list)

                    # Show image
                    cv2.imshow('Sat View not merged',
                               image_sat_current_not_merged)

                    # Display traj
                    image_sat_current, _ = display_traj_on_image(
                        time_ms,
                        cam_model_sat,
                        image_sat,
                        traj_list,
                        display_traj=display_traj,
                        traj_ignore_list_1=list_traj_ignore,
                        traj_ignore_list_2=list_traj_ignore_automatic,
                        traj_ignore_list_3=list_traj_ignore_timeignore,
                        det_zone_FNED_list=det_zone_FNED_list)

                    # Show image
                    cv2.imshow('Sat View merged', image_sat_current)

            if hd_map_mode:

                # Display traj
                image_hdmap_current, det_track_list_hd_merged = display_traj_on_image(
                    time_ms,
                    cam_model_hdmap,
                    image_hdmap,
                    traj_list,
                    display_traj=display_traj,
                    traj_ignore_list_1=list_traj_ignore,
                    traj_ignore_list_2=list_traj_ignore_automatic,
                    traj_ignore_list_3=list_traj_ignore_timeignore,
                    det_zone_FNED_list=det_zone_FNED_list,
                    complete_marker=config.shrink_zone < 1)

                # Show image
                cv2.imshow('HD map view merged', image_hdmap_current)

                cv2.setMouseCallback("HD map view merged",
                                     click_hd_merged,
                                     param=[det_track_list_hd_merged])

                # Display traj
                image_hdmap_current_not_merged, det_track_list_hd_not_merged = display_traj_on_image(
                    time_ms,
                    cam_model_hdmap,
                    image_hdmap,
                    traj_list_not_merged,
                    det_zone_FNED_list=det_zone_FNED_list)

                # Show image
                cv2.imshow('HD map view not merged',
                           image_hdmap_current_not_merged)

                cv2.setMouseCallback("HD map view not merged",
                                     click_hd_not_merged,
                                     param=[det_track_list_hd_not_merged])

            if saving_mode:

                img_annoted_name = img_file_name.split(
                    '.')[0] + '_annotated.png'
                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_annoted_name))

                image_annoted_path = os.path.join(image_annoted_saving_dir,
                                                  img_annoted_name)
                cv2.imwrite(image_annoted_path, image_current_traj)

                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_file_name))
                image_raw_path = os.path.join(image_raw_saving_dir,
                                              img_file_name)
                cv2.imwrite(image_raw_path, image_current)

                if hd_map_mode:

                    img_hdmap_name = img_file_name.split('.')[0] + '_hdmap.png'
                    print('Saving: frame_id: {} image: {}'.format(
                        frame_index, img_hdmap_name))
                    image_hdmap_path = os.path.join(image_hd_map_saving_dir,
                                                    img_hdmap_name)
                    cv2.imwrite(image_hdmap_path, image_hdmap_current)

            #######################################################
            ## Show Detections
            #######################################################

            det_csv_path = ''
            if det_view_enable and det_data_available:
                image_current_det = copy.copy(image_current)

                # CSV name management
                det_csv_name = img_file_name.split('.')[0] + '_det.csv'
                # det_csv_path = os.path.join(config.det_dir, 'csv');
                det_csv_path = config.det_dir
                det_csv_path = os.path.join(det_csv_path, det_csv_name)

                det_object_list = DetObject.from_csv(det_csv_path,
                                                     expand_mask=True)

                track_id_text = False
                if det_asso_data_available:
                    track_id_text = True
                    det_asso_csv_name = img_file_name.split(
                        '.')[0] + '_detassociation.csv'
                    # det_asso_csv_path = os.path.join(config.det_asso_dir, 'csv')
                    det_asso_csv_path = config.det_asso_dir
                    det_asso_csv_path = os.path.join(det_asso_csv_path,
                                                     det_asso_csv_name)

                    try:
                        det_asso_list = detect_utils.read_dict_csv(
                            det_asso_csv_path)
                    except Exception as e:
                        print("ERROR: Could not open csv: {}".format(e))
                        det_asso_list = []

                    for det_object in det_object_list:

                        for det_asso in det_asso_list:

                            track_id = det_asso['track_id']
                            det_id = det_asso['det_id']

                            if det_id == det_object.det_id:
                                det_object.track_id = track_id

                for det in det_object_list:
                    det.display_on_image(image_current_det,
                                         track_id_text=track_id_text)

                # Show image detection
                cv2.imshow('Detection', image_current_det)

                # Set callback to enable / disable detections
                cv2.setMouseCallback("Detection",
                                     click_detection,
                                     param=[
                                         det_object_list, det_csv_path,
                                         image_current, track_id_text,
                                         config.label_replace
                                     ])

        else:
            print('Not found: frame_id: {} image: {}'.format(
                frame_index, img_file_name))

        if config.export:
            # Export trajectorie
            export_trajectories(list_times_ms,
                                traj_list,
                                list_traj_ignore_list=[
                                    list_traj_ignore,
                                    list_traj_ignore_automatic,
                                    list_traj_ignore_timeignore
                                ],
                                time_ignore_list=time_ignore_list,
                                det_zone_ignore_list=det_zone_ignore_list,
                                name_sequence=name_sequence,
                                traj_saving_dir=traj_saving_dir,
                                location_name=config.location_name,
                                date=config.date,
                                start_time=config.start_time,
                                delta_ms=config.delta_ms)

            #Exit the program
            break

        #######################################################
        ## Control keys
        #######################################################
        key = cv2.waitKey(0) & 0xFF

        if key == ord("n"):
            frame_index += skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("b"):
            frame_index += 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("p"):
            frame_index -= skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("o"):
            frame_index -= 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        # Only complete traj
        elif key == ord("f"):
            if config.shrink_zone < 1:
                only_complete = not only_complete
                print('Mode: Display complete trajectroy only: {}'.format(
                    only_complete))

        # Escape: Quit the program
        elif key == 27:
            break

        # Escape: Quit the program
        elif key == ord('z'):
            if sat_view_available:
                if sat_view_enable:
                    cv2.destroyWindow('Sat View not merged')
                    cv2.destroyWindow('Sat View merged')

                    sat_view_enable = False

                else:
                    sat_view_enable = True

        elif key == ord("+"):
            skip_value += 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("-"):
            skip_value -= 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("d"):
            if det_data_available:

                if det_view_enable:
                    cv2.destroyWindow('Detection')
                    det_view_enable = False

                else:
                    det_view_enable = True

            else:
                print('[Error]: Detection data not available in: {}'.format(
                    config.det_dir))

        elif key == ord("a"):

            if det_data_available and det_view_enable:

                image_current_create_det = copy.copy(image_current)

                det_object_list_new, save_flag = run_create_det_object.create_detection(
                    image_current_create_det,
                    config.label_replace,
                    frame_name=img_file_name,
                    frame_id=frame_index,
                    det_object_list=det_object_list)
                if save_flag:
                    det_object_list = det_object_list_new

                    print('Saving detections: {}'.format(det_csv_path))
                    DetObject.to_csv(det_csv_path, det_object_list)

        elif key == ord("c"):
            subprocess.call(["subl", "--new-window", agenttype_corr_path])

        elif key == ord("m"):
            if track_merge_data_available:
                subprocess.call(["subl", "--new-window", config.track_merge])

        elif key == ord("r"):
            subprocess.call(["subl", "--new-window", traj_reverse_path])

        elif key == ord("w"):

            if det_view_enable:
                if det_data_available:
                    subprocess.call(["subl", "--new-window", det_csv_path])

                if det_asso_data_available:
                    subprocess.call(
                        ["subl", "--new-window", det_asso_csv_path])

        elif key == ord("i"):
            subprocess.call(["subl", "--new-window", traj_ingore_path])

        elif key == ord("t"):

            subprocess.call(["subl", "--new-window", time_ignore_path])

        elif key == ord("e"):

            # Export trajectorie
            export_trajectories(list_times_ms,
                                traj_list,
                                list_traj_ignore_list=[
                                    list_traj_ignore,
                                    list_traj_ignore_automatic,
                                    list_traj_ignore_timeignore
                                ],
                                time_ignore_list=time_ignore_list,
                                det_zone_ignore_list=det_zone_ignore_list,
                                name_sequence=name_sequence,
                                traj_saving_dir=traj_saving_dir,
                                location_name=config.location_name,
                                date=config.date,
                                start_time=config.start_time,
                                delta_ms=config.delta_ms)

        else:
            print_instructions()
Ejemplo n.º 3
0
def run_visualize_traj(config):

    # Create output folder
    output_dir = config.output_dir
    output_dir = os.path.join(output_dir, 'visualizer')
    os.makedirs(output_dir, exist_ok=True)

    # Create output sub-folder
    image_raw_saving_dir = os.path.join(output_dir, 'img_raw')
    image_annoted_saving_dir = os.path.join(output_dir, 'img_annoted')
    image_hd_map_saving_dir = os.path.join(output_dir, 'img_hdmap')
    image_concat_saving_dir = os.path.join(output_dir, 'img_concat')

    os.makedirs(image_raw_saving_dir, exist_ok=True)
    os.makedirs(image_annoted_saving_dir, exist_ok=True)
    os.makedirs(image_hd_map_saving_dir, exist_ok=True)
    os.makedirs(image_concat_saving_dir, exist_ok=True)

    # Save the cfg file with the output:
    try:
        cfg_save_path = os.path.join(output_dir, 'visualize_traj_cfg.json')
        with open(cfg_save_path, 'w') as json_file:
            config_dict = vars(config)
            json.dump(config_dict, json_file, indent=4)
    except Exception as e:
        print('[ERROR]: Error saving config file in output folder:\n')
        print('{}'.format(e))
        return

    #Person trajectories
    traj_person_list = []
    traj_person_available = os.path.isfile(config.traj_person)
    if traj_person_available:
        traj_person_list = Trajectory.read_trajectory_panda_csv(
            config.traj_person)

    # Open objects
    cam_model = CameraModel.read_from_yml(config.camera_street)
    det_zone_FNED = det_zone.DetZoneFNED.read_from_yml(config.det_zone_fned)

    # Time
    list_times_ms_path = config.time
    if list_times_ms_path == '':
        list_times_ms_path = config.traj.replace('traj.csv', 'time_traj.csv')
    if not os.path.isfile(list_times_ms_path):
        print(
            '[ERROR]: Traj time file not found: {}'.format(list_times_ms_path))
        return
    list_times_ms = trajutil.read_time_list_csv(list_times_ms_path)

    # Trajectories
    traj_list = Trajectory.read_trajectory_panda_csv(config.traj)

    sat_view_available = False
    sat_view_enable = False
    if os.path.isfile(config.camera_sat) and os.path.isfile(
            config.camera_sat_img):
        cam_model_sat = CameraModel.read_from_yml(config.camera_sat)
        image_sat = cv2.imread(os.path.join(config.camera_sat_img))

        sat_view_available = True

    # Check if image is directoty
    image_in_dir = os.path.isdir(config.image_dir)

    # If image directory, open list of images
    if image_in_dir:
        list_img_file = os.listdir(config.image_dir)
        list_img_file.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))

    # Else open the unique image
    else:
        image = cv2.imread(config.image_dir)

    hd_map_available = os.path.isfile(config.hd_map)
    if hd_map_available:

        hd_map = HDmap.from_csv(config.hd_map)

        cam_model_hdmap, image_hdmap = hd_map.create_view()

        image_hdmap = hd_map.display_on_image(image_hdmap, cam_model_hdmap)

    # Shrink det zone for complete
    det_zone_FNED_complete = None
    if config.shrink_zone < 1:
        det_zone_FNED_complete = det_zone_FNED.shrink_zone(config.shrink_zone)
        for traj in traj_list:
            if not traj.check_is_complete(det_zone_FNED_complete):
                print('Track: {} time_ms: {} not complete'.format(
                    traj.get_id(),
                    traj.get_start_trajoint().time_ms))

    skip_value = 1
    frame_index = 0
    export_mode = False

    # If export mode is direclty asked
    if config.export:
        export_mode = True

    while True:

        #######################################################
        ## Show Trajectories
        #######################################################

        # Get Time ms
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_times_ms) - 1)
        time_ms = list_times_ms[frame_index]

        if image_in_dir:
            img_file_name = list_img_file[frame_index]
            image_current = cv2.imread(
                os.path.join(config.image_dir, img_file_name))
        else:
            # Copy image
            image_current = image

        if not (image_current is None):

            print('Showing: frame_id: {} image: {}'.format(
                frame_index, img_file_name))

            # Display traj
            image_current_traj, _ = run_inspect_traj.display_traj_on_image(
                time_ms,
                cam_model,
                image_current,
                traj_list,
                det_zone_FNED_list=[det_zone_FNED],
                no_label=config.no_label)
            image_current_traj, _ = run_inspect_traj.display_traj_on_image(
                time_ms,
                cam_model,
                image_current_traj,
                traj_person_list,
                det_zone_FNED_list=[det_zone_FNED],
                no_label=config.no_label)

            # Show image
            cv2.imshow('Trajectory visualizer', image_current_traj)

            if sat_view_available:

                if sat_view_enable:

                    # Display traj
                    image_sat_current, _ = run_inspect_traj.display_traj_on_image(
                        time_ms,
                        cam_model_sat,
                        image_sat,
                        traj_list,
                        det_zone_FNED_list=[det_zone_FNED],
                        no_label=config.no_label)
                    image_sat_current, _ = run_inspect_traj.display_traj_on_image(
                        time_ms,
                        cam_model_sat,
                        image_sat_current,
                        traj_person_list,
                        det_zone_FNED_list=[det_zone_FNED],
                        no_label=config.no_label)
                    # Show image
                    cv2.imshow('Sat View merged', image_sat_current)

            if hd_map_available:

                # Display traj
                image_hdmap_current, _ = run_inspect_traj.display_traj_on_image(
                    time_ms,
                    cam_model_hdmap,
                    image_hdmap,
                    traj_list,
                    det_zone_FNED_list=[det_zone_FNED],
                    no_label=config.no_label,
                    velocity_label=True)
                image_hdmap_current, _ = run_inspect_traj.display_traj_on_image(
                    time_ms,
                    cam_model_hdmap,
                    image_hdmap_current,
                    traj_person_list,
                    det_zone_FNED_list=[det_zone_FNED],
                    no_label=config.no_label,
                    velocity_label=True)

                # Show image
                cv2.imshow('HD map view merged', image_hdmap_current)

                image_concat = EKF_utils.concatenate_images(
                    image_current_traj, image_hdmap_current)
                cv2.imshow('View: Camera and HD map', image_concat)

            if export_mode:

                img_annoted_name = img_file_name.split(
                    '.')[0] + '_annotated.png'
                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_annoted_name))

                image_annoted_path = os.path.join(image_annoted_saving_dir,
                                                  img_annoted_name)
                cv2.imwrite(image_annoted_path, image_current_traj)

                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_file_name))
                image_raw_path = os.path.join(image_raw_saving_dir,
                                              img_file_name)
                cv2.imwrite(image_raw_path, image_current)

                if hd_map_available:

                    img_hdmap_name = img_file_name.split('.')[0] + '_hdmap.png'
                    print('Saving: frame_id: {} image: {}'.format(
                        frame_index, img_hdmap_name))
                    image_hdmap_path = os.path.join(image_hd_map_saving_dir,
                                                    img_hdmap_name)
                    cv2.imwrite(image_hdmap_path, image_hdmap_current)

                    img_concat_name = img_file_name.split(
                        '.')[0] + '_concat.png'
                    print('Saving: frame_id: {} image: {}'.format(
                        frame_index, img_concat_name))
                    image_concat_path = os.path.join(image_concat_saving_dir,
                                                     img_concat_name)
                    cv2.imwrite(image_concat_path, image_concat)

        else:
            print('Not found: frame_id: {} image: {}'.format(
                frame_index, img_file_name))

        #######################################################
        ## Control keys
        #######################################################

        if frame_index == (len(list_times_ms) - 1):
            print('Export view: Done')
            export_mode = False

            # Exit when it is done if in export directly mode
            if config.export:
                break

        wait_key = 0
        if export_mode:
            frame_index += 1
            wait_key = 1

        key = cv2.waitKey(wait_key) & 0xFF

        if key == ord("n"):
            frame_index += skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("b"):
            frame_index += 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("p"):
            frame_index -= skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("o"):
            frame_index -= 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        # Escape: Quit the program
        elif key == 27:
            break

        # Escape: Quit the program
        elif key == ord('z'):
            if sat_view_available:
                if sat_view_enable:
                    cv2.destroyWindow('Sat View merged')

                    sat_view_enable = False

                else:
                    sat_view_enable = True

        elif key == ord("+"):
            skip_value += 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("-"):
            skip_value -= 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("e"):

            if not export_mode:
                export_mode = True
                frame_index = 0
                print('Mode: Export mode started')

            else:
                export_mode = False
                print('Mode: Export mode stopped')

        elif key == 255:
            pass

        else:

            print('\nInstruction:\n- n: Next frame\
                                 \n- b: Jump 1000 frame forward\
                                 \n- p: Previous frame\
                                 \n- b: Jump 1000 frame backward\
                                 \n- +: Increase skip value\
                                 \n- -: Decrease skip value\
                                 \n- d: Open detection window\
                                 \n- c: Open Agent type correction\
                                 \n- m: Open merging file with sublime text\
                                 \n- s: Enable saving form current frame\
                                 \n- Click on Detection window: Enable/disable detections\
                                 \n- f: Display only complete trajectories\
                                 \n- i: Open ignore trajectory file\
                                 \n- e: Export trajectory file\
                                 \n- esc: Quit\
                                 \n')
def run_visualize_conflict_and_traj(
        config, Thread=None):  # 模仿yolo_gpu_bugged.py加入 thread 参数,关注是否存在进程

    # Create output folder
    output_dir = config.output_dir
    output_dir = os.path.join(output_dir, 'visualizer')
    os.makedirs(output_dir, exist_ok=True)

    # Create output sub-folder
    image_raw_saving_dir = os.path.join(output_dir, 'img_raw')
    image_annoted_saving_dir = os.path.join(output_dir, 'img_annoted')
    image_hd_map_saving_dir = os.path.join(output_dir, 'img_hdmap')
    image_concat_saving_dir = os.path.join(output_dir, 'img_concat')
    # 用于保存画了 冲突点 的图片
    image_concat_with_conflict_point_saving_dir = os.path.join(
        output_dir, 'img_concat_with_conflict')

    os.makedirs(image_raw_saving_dir, exist_ok=True)
    os.makedirs(image_annoted_saving_dir, exist_ok=True)
    os.makedirs(image_hd_map_saving_dir, exist_ok=True)
    os.makedirs(image_concat_saving_dir, exist_ok=True)
    os.makedirs(image_concat_with_conflict_point_saving_dir, exist_ok=True)

    # Save the cfg file with the output:
    try:
        cfg_save_path = os.path.join(output_dir, 'visualize_traj_cfg.json')
        with open(cfg_save_path, 'w') as json_file:
            config_dict = vars(config)
            json.dump(config_dict, json_file, indent=4)
    except Exception as e:
        print('[ERROR]: Error saving config file in output folder:\n')
        print('{}'.format(e))
        return

    #Person trajectories
    traj_person_list = []
    traj_person_available = os.path.isfile(config.traj_person)
    if traj_person_available:
        traj_person_list = Trajectory.read_trajectory_panda_csv(
            config.traj_person)

    # Open objects
    cam_model = CameraModel.read_from_yml(config.camera_street)
    det_zone_FNED = det_zone.DetZoneFNED.read_from_yml(config.det_zone_fned)

    # Time
    list_times_ms_path = config.time
    if list_times_ms_path == '':
        list_times_ms_path = config.traj.replace('traj.csv', 'time_traj.csv')
    if not os.path.isfile(list_times_ms_path):
        print(
            '[ERROR]: Traj time file not found: {}'.format(list_times_ms_path))
        return
    list_times_ms = trajutil.read_time_list_csv(list_times_ms_path)

    # Trajectories
    traj_list = Trajectory.read_trajectory_panda_csv(config.traj)

    # 读取Conflict_list
    conflict_list = Conflict.read_conflict_panda_csv(config.conflicts)

    sat_view_available = False
    sat_view_enable = False
    if os.path.isfile(config.camera_sat) and os.path.isfile(
            config.camera_sat_img):
        cam_model_sat = CameraModel.read_from_yml(config.camera_sat)
        image_sat = cv2.imread(os.path.join(config.camera_sat_img))

        sat_view_available = True

    # Check if image is directoty
    image_in_dir = os.path.isdir(config.image_dir)

    # If image directory, open list of images
    if image_in_dir:
        list_img_file = os.listdir(config.image_dir)
        list_img_file.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))

    # Else open the unique image
    else:
        image = cv2.imread(config.image_dir)

    hd_map_available = os.path.isfile(config.hd_map)
    if hd_map_available:

        hd_map = HDmap.from_csv(config.hd_map)

        cam_model_hdmap, image_hdmap = hd_map.create_view()

        image_hdmap = hd_map.display_on_image(image_hdmap, cam_model_hdmap)

    # Shrink det zone for complete
    det_zone_FNED_complete = None
    if config.shrink_zone < 1:
        det_zone_FNED_complete = det_zone_FNED.shrink_zone(config.shrink_zone)
        for traj in traj_list:
            if not traj.check_is_complete(det_zone_FNED_complete):
                print('Track: {} time_ms: {} not complete'.format(
                    traj.get_id(),
                    traj.get_start_trajoint().time_ms))

    skip_value = 1
    frame_index = 0
    export_mode = False

    # If export mode is direclty asked
    if config.export:
        export_mode = True

    while True:

        #######################################################
        ## Show Trajectories And Conflict
        #######################################################

        # Get Time ms
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_times_ms) - 1)
        #剪辑返回的是帧序,保证帧序在0到最大之间
        time_ms = list_times_ms[frame_index]
        # 读取当前的时刻,用于遍历所有存在轨迹的时间段

        if image_in_dir:
            img_file_name = list_img_file[frame_index]
            image_current = cv2.imread(
                os.path.join(config.image_dir, img_file_name))
        else:
            # Copy image
            image_current = image

        if (not (image_current is None)) & (
                not Thread.pause):  # 加上 (not Thread.pause)是为了在暂停时也停下画图

            print('Showing: frame_id: {} image: {}'.format(
                frame_index, img_file_name))
            Thread.signalCanvas("Showing: frame_id: {} image: {}".format(
                frame_index, img_file_name))

            # Display traj
            ################# 改为展示从0到当前time_ms所有点画在图上
            #  要实现速度标签打上去,加上“velocity_label = True”
            image_current_traj, _ = run_inspect_traj.display_conflict_traj_on_image(
                time_ms,
                cam_model,
                image_current,
                traj_list,
                det_zone_FNED_list=[det_zone_FNED],
                no_label=config.no_label,
                velocity_label=True)
            image_current_traj, _ = run_inspect_traj.display_conflict_traj_on_image(
                time_ms,
                cam_model,
                image_current_traj,
                traj_person_list,
                det_zone_FNED_list=[det_zone_FNED],
                no_label=config.no_label,
                velocity_label=True)

            # 在图片上画出轨迹线?
            # Show image
            # cv2.imshow('Trajectory visualizer', image_current_traj)

            # if sat_view_available:
            #
            #     if sat_view_enable:
            #
            #         # Display traj
            #         image_sat_current, _ = run_inspect_traj.display_traj_on_image(time_ms, cam_model_sat, image_sat, traj_list, det_zone_FNED_list = [det_zone_FNED], no_label = config.no_label);
            #         image_sat_current, _ = run_inspect_traj.display_traj_on_image(time_ms, cam_model_sat, image_sat_current, traj_person_list, det_zone_FNED_list = [det_zone_FNED], no_label = config.no_label)
            #         # Show image
            #         cv2.imshow('Sat View merged', image_sat_current)

            # 为了降低耦合性,分为两个函数写

            # Display Conflicts

            # 设置要画冲突点的图片
            image_traj_with_conflict = image_current_traj

            # 判断当前 整个视频 是否存在冲突点,若冲突数组(即冲突csv文件为空)不为空,继续
            if len(conflict_list) != 0:

                for per_ms_conflict_list in conflict_list:

                    # 如果当前时刻存在冲突数组,则循环画上去,画 点 和 线 以及标 TTC
                    if per_ms_conflict_list[0].get_time_ms() == time_ms:

                        # print('画' + str(time_ms) + 'ms 时刻冲突点\n\n\n')
                        for conflict_point in per_ms_conflict_list:

                            image_traj_with_conflict = conflict_point.display_conflict_point_on_image(time_ms, \
                                                                                                      cam_model, \
                                                                                                      image_traj_with_conflict, \
                                                                                                      traj_list, \
                                                                                                      TTC_label = True,\
                                                                                                      is_hd_map = False)
                            Thread.signalCanvas(str(time_ms) + "ms 时刻检测到冲突,TTC:{} s, 冲突车1的x坐标:{},冲突车1的y坐标{},"
                                                "冲突车2的x坐标:{},冲突车1的y坐标{}\n"\
                                                .format(round(float(conflict_point.get_TTC()), 2), \
                                                        round(float(conflict_point.get_point_A_x()), 2),\
                                                        round(float(conflict_point.get_point_A_y()), 2),\
                                                        round(float(conflict_point.get_point_B_x()), 2),\
                                                        round(float(conflict_point.get_point_B_y()), 2)))

            if hd_map_available:

                # Display traj
                image_hdmap_current, _ = run_inspect_traj.display_traj_on_image(time_ms,\
                                                                                cam_model_hdmap,\
                                                                                image_hdmap,\
                                                                                traj_list,\
                                                                                det_zone_FNED_list = [det_zone_FNED],\
                                                                                no_label = config.no_label,\
                                                                                velocity_label=True)
                image_hdmap_current, _ = run_inspect_traj.display_traj_on_image(time_ms,\
                                                                                cam_model_hdmap,\
                                                                                image_hdmap_current,\
                                                                                traj_person_list,\
                                                                                det_zone_FNED_list = [det_zone_FNED],\
                                                                                no_label = config.no_label,\
                                                                                velocity_label=True)

                # # Show image
                # cv2.imshow('HD map view merged', image_hdmap_current)

                # 模仿上面的函数在 俯视 视角的图片中画 冲突点
                image_hd_traj_with_conflict = image_hdmap_current
                # 判断当前 整个视频 是否存在冲突点,若冲突数组(即冲突csv文件为空)不为空,继续
                if len(conflict_list) != 0:

                    for per_ms_conflict_list in conflict_list:

                        # 如果当前时刻存在冲突数组,则循环画上去,画 点 和 线 以及标 TTC
                        if per_ms_conflict_list[0].get_time_ms() == time_ms:

                            # print('画' + str(time_ms) + 'ms 时刻俯视冲突点\n\n\n')
                            for conflict_point in per_ms_conflict_list:

                                image_hd_traj_with_conflict = conflict_point.display_conflict_point_on_image(time_ms,\
                                                                                                             cam_model_hdmap,\
                                                                                                             image_hd_traj_with_conflict,\
                                                                                                             traj_list,\
                                                                                                             TTC_label=True, \
                                                                                                             is_hd_map = True)

                image_concat = EKF_utils.concatenate_images(
                    image_traj_with_conflict, image_hd_traj_with_conflict)
                # 隐藏了结合视图
                # cv2.imshow('View: Camera and HD map', image_concat)

            if export_mode:

                img_annoted_name = img_file_name.split(
                    '.')[0] + '_annotated.png'
                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_annoted_name))

                image_annoted_path = os.path.join(image_annoted_saving_dir,
                                                  img_annoted_name)
                cv2.imwrite(image_annoted_path, image_traj_with_conflict)

                print('Saving: frame_id: {} image: {}'.format(
                    frame_index, img_file_name))
                image_raw_path = os.path.join(image_raw_saving_dir,
                                              img_file_name)
                cv2.imwrite(image_raw_path, image_current)

                if hd_map_available:

                    img_hdmap_name = img_file_name.split('.')[0] + '_hdmap.png'
                    print('Saving: frame_id: {} image: {}'.format(
                        frame_index, img_hdmap_name))
                    image_hdmap_path = os.path.join(image_hd_map_saving_dir,
                                                    img_hdmap_name)
                    cv2.imwrite(image_hdmap_path, image_hd_traj_with_conflict)

                    img_concat_name = img_file_name.split(
                        '.')[0] + '_concat.png'
                    print('Saving: frame_id: {} image: {}'.format(
                        frame_index, img_concat_name))
                    Thread.signalCanvas(
                        'Saving: frame_id: {} image: {}'.format(
                            frame_index, img_concat_name))
                    image_concat_path = os.path.join(image_concat_saving_dir,
                                                     img_concat_name)
                    cv2.imwrite(image_concat_path, image_concat)
                    # 发送信号给meau_controller,在窗口实现图片展示
                    if not Thread.pause:  # 线程未暂停

                        Thread.signalImg(image_concat_path)
                    # 如何实现线程的暂停与再次启动

        elif Thread.pause:  # 若是因为暂停
            a = 1
            # print('暂停检测')
            # time.sleep(3)
        else:
            print('Not found: frame_id: {} image: {}'.format(
                frame_index, img_file_name))

        if Thread.kill:  # 若点击“结束”,则结束循环
            break

        #######################################################
        ## Control keys
        #######################################################

        if frame_index == (len(list_times_ms) - 1):
            print('Export view: Done')
            Thread.signalCanvas('Export view: Done')
            export_mode = False
            # 展示所有 检测冲突数据
            print_conflicts_result(conflict_list, Thread)

            # Exit when it is done if in export directly mode
            if config.export:
                break

        wait_key = 0
        if export_mode & (not Thread.pause):  # 暂停,不再读取下一帧
            frame_index += 1
            wait_key = 1

        key = cv2.waitKey(wait_key) & 0xFF

        if key == ord("n"):
            frame_index += skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("b"):
            frame_index += 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("p"):
            frame_index -= skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        elif key == ord("o"):
            frame_index -= 1000 * skip_value
            mathutil.clip(frame_index, 0, len(list_times_ms))

        # Escape: Quit the program
        elif key == 27:
            break

        # Escape: Quit the program
        elif key == ord('z'):
            if sat_view_available:
                if sat_view_enable:
                    cv2.destroyWindow('Sat View merged')

                    sat_view_enable = False

                else:
                    sat_view_enable = True

        elif key == ord("+"):
            skip_value += 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("-"):
            skip_value -= 1
            skip_value = max(1, skip_value)
            print('Skip value: {}'.format(skip_value))

        elif key == ord("e"):

            if not export_mode:
                export_mode = True
                frame_index = 0
                print('Mode: Export mode started')

            else:
                export_mode = False
                print('Mode: Export mode stopped')

        elif key == 255:
            pass

        else:

            print('\nInstruction:\n- n: Next frame\
                                 \n- b: Jump 1000 frame forward\
                                 \n- p: Previous frame\
                                 \n- b: Jump 1000 frame backward\
                                 \n- +: Increase skip value\
                                 \n- -: Decrease skip value\
                                 \n- d: Open detection window\
                                 \n- c: Open Agent type correction\
                                 \n- m: Open merging file with sublime text\
                                 \n- s: Enable saving form current frame\
                                 \n- Click on Detection window: Enable/disable detections\
                                 \n- f: Display only complete trajectories\
                                 \n- i: Open ignore trajectory file\
                                 \n- e: Export trajectory file\
                                 \n- esc: Quit\
                                 \n')
def main():

    # Arg parser:
    parser = argparse.ArgumentParser(description='Visualize the detections')
    parser.add_argument('-image',
                        dest="image_path",
                        type=str,
                        help='Path of the image',
                        default='dataset/test/varna_20190125_153327_0_900/img')
    parser.add_argument(
        '-det',
        dest="det_dir_path",
        type=str,
        help='Path to the detection folder',
        default=
        'dataset/test/varna_20190125_153327_0_900/output/test_output/det_crop')
    parser.add_argument('-label',
                        dest="label_list",
                        nargs='*',
                        type=str,
                        help='List of label to show: boat airplane',
                        default=['traffic light'])
    parser.add_argument('-label_replace',
                        dest="label_replace",
                        type=str,
                        help='Label used to replace labels',
                        default='car')

    args = parser.parse_args()

    print('\nShow detections: {}'.format(args.label_list))
    print('Replace by: {}\n'.format(args.label_replace))

    # Check if det data available:
    det_data_available = os.path.isdir(args.det_dir_path)
    print('Detection data: {}'.format(det_data_available))

    if len(args.label_list) < 1:
        print('[ERROR]: Label list empty: {}'.format(args.label_list))
        return

    # Check if image is directoty
    image_in_dir = os.path.isdir(args.image_path)

    # If image directory, open list of images
    if image_in_dir:
        list_img_file = os.listdir(args.image_path)
        list_img_file.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))

    # Else open the unique image
    else:
        image = cv2.imread(args.image_path)

    frame_index = 0
    step = 1
    while True:

        #######################################################
        ## Show Trajectories
        #######################################################

        # Get Time ms
        frame_index = mathutil.clip(frame_index, 0,
                                    len(list_img_file) - 1)

        if image_in_dir:
            img_file_name = list_img_file[frame_index]
            image_current = cv2.imread(
                os.path.join(args.image_path, img_file_name))
        else:
            # Copy image
            image_current = image

        print('Showing: frame_id: {} image: {}'.format(frame_index,
                                                       img_file_name))

        #######################################################
        ## Show Detections
        #######################################################

        label_detected = False
        det_csv_path = ''

        image_current_det = copy.copy(image_current)

        det_object_list = []
        if det_data_available:

            # CSV name management
            det_csv_name = img_file_name.split('.')[0] + '_det.csv'
            det_csv_path = os.path.join(args.det_dir_path, 'csv')
            det_csv_path = os.path.join(det_csv_path, det_csv_name)

            det_object_list = DetObject.from_csv(det_csv_path,
                                                 expand_mask=True)

            for det_object in det_object_list:
                if det_object.label in args.label_list:
                    det_object.display_on_image(image_current_det)
                    label_detected = True

        if label_detected or frame_index == 0 or frame_index == len(
                list_img_file) - 1 or step == 0:

            cv2.imshow('Detection', image_current_det)

            # Set callback to enable / disable detections
            cv2.setMouseCallback("Detection",
                                 click_detection,
                                 param=[
                                     det_object_list, det_csv_path,
                                     image_current, args.label_list,
                                     args.label_replace
                                 ])

            wait_key = 0

            key = cv2.waitKey(wait_key) & 0xFF

            if key == ord("q"):
                break

            elif key == ord("n"):
                step = 1

            elif key == ord("p"):
                step = -1

        frame_index += step
        mathutil.clip(frame_index, 0, len(list_img_file))