Ejemplo n.º 1
0
def run_mean_field_extended(NRN1, NRN2, NTWK, array_func,\
                            Ne=8000, Ni=2000, T=5e-3,\
                            afferent_exc_fraction=0.,
                            dt=1e-4, tstop=2, extended_output=False,\
                            ext_drive_change=0.):

    # find external drive
    M = get_connectivity_and_synapses_matrix(NTWK, SI_units=True)
    ext_drive = M[0,0]['ext_drive']
    if afferent_exc_fraction<0.5:
        afferent_exc_fraction = M[0,0]['afferent_exc_fraction']
    
    X0 = find_fixed_point(NRN1, NRN2, NTWK, exc_aff=ext_drive+ext_drive_change,\
                          Ne=Ne, Ni=Ni,
                          verbose=True)

    TF1, TF2 = load_transfer_functions(NRN1, NRN2, NTWK)

    t = np.arange(int(tstop/dt))*dt
    
    def dX_dt_scalar(X, t=0):
        exc_aff = ext_drive+ext_drive_change+(1-afferent_exc_fraction)*array_func(t)
        pure_exc_aff = (2*afferent_exc_fraction-1)*array_func(t) # what needs to be added
        return build_up_differential_operator(TF1, TF2, Ne=Ne, Ni=Ni, T=T)(X,\
                                      exc_aff=exc_aff, pure_exc_aff=pure_exc_aff)


    X = np.zeros((len(t), len(X0)))
    X[0,:] = X0
    for i in range(len(t)-1):
        exc_aff = ext_drive+ext_drive_change+(1-afferent_exc_fraction)*array_func(t[i])
        pure_exc_aff = (2*afferent_exc_fraction-1)*array_func(t[i]) # what needs to be added
        # X[i+1,:] = X[i,:] + dt*dX_dt_scalar(X[i,:], t=t[i])
        X[i+1,:] = X[i,:] + (t[1]-t[0])*build_up_differential_operator(TF1, TF2,\
                Ne=Ne, Ni=Ni)(X[i,:], exc_aff=exc_aff, pure_exc_aff=pure_exc_aff)
    
    fe, fi = X[:,0], X[:,1]
    sfe, sfei, sfi = [np.sqrt(X[:,i]) for i in range(2,5)]

    if extended_output:
        params = get_neuron_params(NRN2, SI_units=True)
        reformat_syn_parameters(params, M)

        exc_aff = ext_drive+ext_drive_change+(1-afferent_exc_fraction)*array_func(t)
        pure_exc_aff = (2*afferent_exc_fraction-1)*array_func(t) # what needs to be added


        # excitatory neurons have more excitation
        muV_e, sV_e, muGn_e, TvN_e = get_fluct_regime_vars(\
                                                           fe+exc_aff+pure_exc_aff,\
                                                           fi, *pseq_params(params))
        muV_i, sV_i, muGn_i, TvN_i = get_fluct_regime_vars(\
                                                           fe+exc_aff,\
                                                           fi, *pseq_params(params))
        muV, sV, muGn, TvN = .8*muV_e+.2*muV_i, .8*sV_e+.2*sV_i,\
                                        .8*muGn_e+.2*muGn_i, .8*TvN_e+.2*TvN_i,
            
        return t, fe, fi, sfe, sfei, sfi, muV, sV, muGn, TvN
    else:
        return t, fe, fi, sfe, sfei, sfi
Ejemplo n.º 2
0
def run_mean_field(NRN1, NRN2, NTWK, array_func,\
                   T=5e-3, dt=1e-4, tstop=2, extended_output=False,\
                   afferent_exc_fraction=0.,
                   ext_drive_change=0.):

    # find external drive
    M = get_connectivity_and_synapses_matrix(NTWK, SI_units=True)
    ext_drive = M[0,0]['ext_drive']
    if afferent_exc_fraction<0.5:
        afferent_exc_fraction = M[0,0]['afferent_exc_fraction']

    X0 = find_fixed_point_first_order(NRN1, NRN2, NTWK, exc_aff=ext_drive+ext_drive_change,\
                                      verbose=False)

    TF1, TF2 = load_transfer_functions(NRN1, NRN2, NTWK)

    t = np.arange(int(tstop/dt))*dt
    
    def dX_dt_scalar(X, t=0):
        exc_aff = ext_drive+ext_drive_change+(1-afferent_exc_fraction)*array_func(t)
        pure_exc_aff = (2*afferent_exc_fraction-1)*array_func(t) # what needs to be added
        return build_up_differential_operator_first_order(TF1, TF2, T=T)(X,\
                                                exc_aff=exc_aff, pure_exc_aff=pure_exc_aff)
        
    fe, fi = odeint(dX_dt_scalar, X0, t).T

    if extended_output:
        params = get_neuron_params(NRN2, SI_units=True)
        reformat_syn_parameters(params, M)

        exc_aff = ext_drive+ext_drive_change+(1-afferent_exc_fraction)*array_func(t)
        pure_exc_aff = (2*afferent_exc_fraction-1)*array_func(t) # what needs to be added


        # excitatory neurons have more excitation
        muV_e, sV_e, muGn_e, TvN_e = get_fluct_regime_vars(\
                                                           fe+exc_aff+pure_exc_aff,\
                                                           fi, *pseq_params(params))
        muV_i, sV_i, muGn_i, TvN_i = get_fluct_regime_vars(\
                                                           fe+exc_aff,\
                                                           fi, *pseq_params(params))
        muV, sV, muGn, TvN = .8*muV_e+.2*muV_i, .8*sV_e+.2*sV_i,\
                                        .8*muGn_e+.2*muGn_i, .8*TvN_e+.2*TvN_i,
            
        return t, fe, fi, muV, sV, muGn, TvN
    else:
        return t, fe, fi
def plot_ntwk_sim_output_for_waveform(args,\
                                      BIN=5, min_time=200, bar_ms=50,
                                      zoom_conditions=None, vpeak=-35,\
                                      raster_number=400):

    BIN = 8
    time_array, rate_array, rate_exc, rate_inh,\
        Raster_exc, Raster_inh,\
        Vm_exc, Vm_inh, Ge_exc, Ge_inh, Gi_exc, Gi_inh = np.load(args.file,allow_pickle = True)

    rate_exc = rate_exc + 0.2
    print("ee")

    if zoom_conditions is not None:
        z = zoom_conditions
    else:
        z = [time_array[0], time_array[-1]]
    cond_t = (time_array > z[0]) & (time_array < z[1])

    ###### =========================================== ######
    ############# adding the theoretical eval ###############
    ###### =========================================== ######

    t0 = args.t0 - 4 * args.T1

    def rate_func(t):
        return double_gaussian(t, 1e-3 * args.t0, 1e-3 * args.T1,
                               1e-3 * args.T2, args.amp)

    t, fe, fi, sfe, sfei, sfi = run_mean_field_extended(args.CONFIG.split('--')[0],\
                               args.CONFIG.split('--')[1],args.CONFIG.split('--')[2],\
                               rate_func,dt=5e-4,
                               tstop=args.tstop*1e-3)

    tfirst, fefirst, fifirst = run_mean_field(args.CONFIG.split('--')[0],
                                              args.CONFIG.split('--')[1],
                                              args.CONFIG.split('--')[2],
                                              rate_func,
                                              dt=5e-4,
                                              tstop=args.tstop * 1e-3)

    params = get_neuron_params(args.CONFIG.split('--')[0], SI_units=True)
    M = get_connectivity_and_synapses_matrix('CONFIG1', SI_units=True)
    reformat_syn_parameters(params, M)  # merging those parameters
    ext_drive = M[0, 0]['ext_drive']
    afferent_exc_fraction = M[0, 0]['afferent_exc_fraction']

    fe_e, fe_i = fe + ext_drive + rate_func(t), fe + ext_drive
    muV_e, sV_e, muGn_e, TvN_e = get_fluct_regime_vars(fe_e, fi,
                                                       *pseq_params(params))
    muV_i, sV_i, muGn_i, TvN_i = get_fluct_regime_vars(fe_i, fi,
                                                       *pseq_params(params))

    Ne = Raster_inh[1].min()

    FIGS = []
    # plotting
    FIGS.append(plt.figure(figsize=(5, 4)))
    cond = (Raster_exc[0] > z[0]) & (Raster_exc[0] < z[1]) & (
        Raster_exc[1] > Ne - raster_number)
    plt.plot(Raster_exc[0][cond], Raster_exc[1][cond], '.g')
    cond = (Raster_inh[0] > z[0]) & (Raster_inh[0] < z[1]) & (
        Raster_inh[1] < Ne + .2 * raster_number)
    plt.plot(Raster_inh[0][cond], Raster_inh[1][cond], '.r')
    '''
    plt.plot([z[0],z[0]+bar_ms], [Ne, Ne], 'k-', lw=5)
    plt.annotate(str(bar_ms)+'ms', (z[0]+bar_ms, Ne))
    '''
    #set_plot(plt.gca(), ['left'], ylabel='Neuron index', xticks=[])

    FIGS.append(plt.figure(figsize=(5, 5)))
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))
    for i in range(len(Vm_exc)):
        ax1.plot(time_array[cond_t], Vm_exc[i][cond_t], 'g-', lw=.5)
        spk = np.where((Vm_exc[i][cond_t][:-1] > -50)
                       & (Vm_exc[i][cond_t][1:] < -55))[0]
        for ispk in spk:
            ax1.plot(time_array[cond_t][ispk] * np.ones(2),
                     [Vm_exc[i][cond_t][ispk], vpeak], 'g--')
        ax2.plot(time_array[cond_t], Ge_exc[i][cond_t], 'g-', lw=.5)
        ax2.plot(time_array[cond_t], Gi_exc[i][cond_t], 'r-', lw=.5)
    # vm
    ax1.plot(1e3 * t[1e3 * t > t0], 1e3 * muV_e[1e3 * t > t0], 'g-', lw=2)
    ax1.fill_between(1e3*t[1e3*t>t0], 1e3*(muV_e[1e3*t>t0]-sV_e[1e3*t>t0]),\
                     1e3*(muV_e[1e3*t>t0]+sV_e[1e3*t>t0]), color='g', alpha=.4)
    # ge
    ge_th = 1e9 * fe_e[1e3 * t > t0] * params['Qe'] * params['Te'] * (
        1 - params['gei']) * params['pconnec'] * params['Ntot']
    sge_th = 1e9 * params['Qe'] * np.sqrt(
        fe_e[1e3 * t > t0] * params['Te'] *
        (1 - params['gei']) * params['pconnec'] * params['Ntot'])
    ax2.plot(1e3 * t[1e3 * t > t0], ge_th, 'g-', lw=2)
    ax2.fill_between(1e3 * t[1e3 * t > t0],
                     ge_th - sge_th,
                     ge_th + sge_th,
                     color='g',
                     alpha=.4)
    gi_th = 1e9 * fi[1e3 * t > t0] * params['Qi'] * params['Ti'] * params[
        'gei'] * params['pconnec'] * params['Ntot']
    sgi_th = 1e9 * params['Qi'] * np.sqrt(
        fi[1e3 * t > t0] * params['Ti'] * params['gei'] * params['pconnec'] *
        params['Ntot'])
    ax2.plot(1e3 * t[1e3 * t > t0], gi_th, 'r-', lw=2)
    ax2.fill_between(1e3 * t[1e3 * t > t0],
                     gi_th - sgi_th,
                     gi_th + sgi_th,
                     color='r',
                     alpha=.4)

    ax1.plot(time_array[cond_t][0] * np.ones(2), [-65, -55], lw=4, color='k')
    ax1.annotate('10mV', (time_array[cond_t][0], -65))
    #set_plot(ax1, [], xticks=[], yticks=[])
    #set_plot(ax2, ['left'], ylabel='$G$ (nS)', xticks=[])

    FIGS.append(plt.figure(figsize=(5, 5)))
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))
    for i in range(len(Vm_inh)):
        ax1.plot(time_array[cond_t], Vm_inh[i][cond_t], 'r-', lw=.5)
        spk = np.where((Vm_inh[i][cond_t][:-1] > -51)
                       & (Vm_inh[i][cond_t][1:] < -55))[0]
        for ispk in spk:
            ax1.plot(time_array[cond_t][ispk] * np.ones(2),
                     [Vm_inh[i][cond_t][ispk], vpeak], 'r--')
        ax2.plot(time_array[cond_t], Ge_inh[i][cond_t], 'g-', lw=.5)
        ax2.plot(time_array[cond_t], Gi_inh[i][cond_t], 'r-', lw=.5)

    # vm
    ax1.plot(1e3 * t[1e3 * t > t0], 1e3 * muV_i[1e3 * t > t0], 'r-', lw=2)
    ax1.fill_between(1e3*t[1e3*t>t0], 1e3*(muV_i[1e3*t>t0]-sV_i[1e3*t>t0]),\
                     1e3*(muV_i[1e3*t>t0]+sV_i[1e3*t>t0]), color='r', alpha=.4)
    ge_th = 1e9 * fe_i[1e3 * t > t0] * params['Qe'] * params['Te'] * (
        1 - params['gei']) * params['pconnec'] * params['Ntot']
    sge_th = 1e9 * params['Qe'] * np.sqrt(
        fe_i[1e3 * t > t0] * params['Te'] *
        (1 - params['gei']) * params['pconnec'] * params['Ntot'])
    ax2.plot(1e3 * t[1e3 * t > t0], ge_th, 'g-', lw=2)
    ax2.fill_between(1e3 * t[1e3 * t > t0],
                     ge_th - sge_th,
                     ge_th + sge_th,
                     color='g',
                     alpha=.4)
    ax2.plot(1e3 * t[1e3 * t > t0], gi_th, 'r-', lw=2)
    ax2.fill_between(1e3 * t[1e3 * t > t0],
                     gi_th - sgi_th,
                     gi_th + sgi_th,
                     color='r',
                     alpha=.4)

    ax1.plot(time_array[cond_t][0] * np.ones(2), [-65, -55], lw=4, color='k')
    ax1.annotate('10mV', (time_array[cond_t][0], -65))
    #set_plot(ax1, [], xticks=[], yticks=[])
    #set_plot(ax2, ['left'], ylabel='$G$ (nS)', xticks=[])

    fig, AX = plt.subplots(figsize=(5, 3))
    # we bin the population rate
    rate_exc = bin_array(rate_exc[cond_t], BIN, time_array[cond_t])
    rate_inh = bin_array(rate_inh[cond_t], BIN, time_array[cond_t])
    rate_array = bin_array(rate_array[cond_t], BIN, time_array[cond_t])
    time_array = bin_array(time_array[cond_t], BIN, time_array[cond_t])

    AX.plot(time_array, rate_exc, 'g-', lw=.6, label='$\\nu_e(t)$')

    AX.plot(time_array, rate_inh, 'r-', lw=.6, label='$\\nu_i(t)$')
    AX.plot(1000 * tfirst, fifirst, 'r--', lw=.6, label='$\\nu_i(t)$')

    np.save('HH_response', [
        1000 * tfirst, fefirst, fifirst, t, fe, fi, sfe, sfi,
        rate_func(tfirst)
    ])

    #AX.plot(time_array, .8*rate_exc+.2*rate_inh, 'k-', lw=2, label='$\\nu(t)$')

    AX.plot(1e3 * t[1e3 * t > t0], fi[1e3 * t > t0], 'r-', label='num. sim.')
    AX.plot(1e3*t[1e3*t>t0], rate_func(t[1e3*t>t0]), 'k:',\
            lw=2, label='$\\nu_e^{aff}(t)$ \n $\\nu_e^{drive}$')
    AX.plot(1e3 * t[1e3 * t > t0],
            fe[1e3 * t > t0],
            'g-',
            label='mean field \n pred.')
    AX.fill_between(1e3*t[1e3*t>t0], fe[1e3*t>t0]-sfe[1e3*t>t0], fe[1e3*t>t0]+sfe[1e3*t>t0],\
                        color='g', alpha=.3, label='mean field \n pred.')

    AX.fill_between(1e3*t[1e3*t>t0], fi[1e3*t>t0]-sfi[1e3*t>t0], fi[1e3*t>t0]+sfi[1e3*t>t0],\
                        color='r', alpha=.3)
    # AX.plot(1e3*t[1e3*t>t0], .8*fe[1e3*t>t0]+.2*fi[1e3*t>t0], 'k-', label='..')

    AX.legend(prop={'size': 'xx-small'})

    #set_plot(AX, ['left'], ylabel='$\\nu$ (Hz)', xticks=[], num_yticks=3)
    FIGS.append(fig)

    print('excitatory rate: ', rate_exc[len(rate_exc) / 2:].mean(), 'Hz')
    print('inhibitory rate: ', rate_inh[len(rate_exc) / 2:].mean(), 'Hz')
    print(sfe[0], sfe[-1])
    plt.show()
    return FIGS
def plot_ntwk_sim_output(time_array, rate_array, rate_exc, rate_inh,\
                         Raster_exc, Raster_inh,\
                         Vm_exc, Vm_inh, Ge_exc, Ge_inh, Gi_exc, Gi_inh,\
                         BIN=5, min_time=2000):

    BIN = 15.

    cond_t = (time_array > min_time)  # transient behavior after 400 ms

    params = get_neuron_params(args.CONFIG.split('--')[0], SI_units=True)
    M = get_connectivity_and_synapses_matrix('CONFIG1', SI_units=True)
    EXC_AFF = M[0, 0]['ext_drive']

    print('starting fixed point')
    fe0, fi0, sfe, sfie, sfi = find_fixed_point(args.CONFIG.split('--')[0], args.CONFIG.split('--')[1], 'CONFIG1',\
                                                exc_aff=EXC_AFF, Ne=8000, Ni=2000, verbose=True)
    print('end fixed point')

    reformat_syn_parameters(params, M)  # merging those parameters

    xfe = fe0 + np.linspace(-4, 4) * sfe
    fe_pred = gaussian_func(xfe, fe0, sfe)
    xfi = fi0 + np.linspace(-4, 4) * sfi
    fi_pred = gaussian_func(xfi, fi0, sfi)

    mGe, mGi, sGe, sGi = mean_and_var_conductance(fe0 + EXC_AFF, fi0,
                                                  *pseq_params(params))
    muV, sV, muGn, TvN = get_fluct_regime_vars(fe0 + EXC_AFF, fi0,
                                               *pseq_params(params))
    print("eee", muV)
    FE, FI = np.meshgrid(xfe, xfi)
    pFE, pFI = np.meshgrid(fe_pred, fi_pred)
    MUV, SV, _, _ = get_fluct_regime_vars(
        FE + EXC_AFF, FI, *pseq_params(params)) * pFE * pFI / np.sum(pFE * pFI)

    ### MEMBRANE POTENTIAL
    MEAN_VM, STD_VM, KYRT_VM = [], [], []
    for i in range(len(Vm_exc)):
        MEAN_VM.append(Vm_exc[i][(time_array > min_time) & (Vm_exc[i] != -65) &
                                 (Vm_exc[i] < -50)].mean())
        MEAN_VM.append(Vm_inh[i][(time_array > min_time) & (Vm_inh[i] != -65) &
                                 (Vm_inh[i] < -50)].mean())
        for vv in [
                Vm_exc[i][(time_array > min_time)],
                Vm_inh[i][(time_array > min_time)]
        ]:
            i0 = np.where((vv[:-1] > -52) & (vv[1:] < -60))[0]
            print(i0)
            sv = []
            if len(i0) == 0:
                STD_VM.append(vv.std())
            elif len(i0) == 1:
                STD_VM.append(vv[0].std())
            else:
                for i1, i2 in zip(i0[:-1], i0[1:]):
                    if i2 - i1 > 60:
                        sv.append(vv[i1 + 30:i2 - 30].std())
                STD_VM.append(np.array(sv).mean())
        STD_VM.append(Vm_inh[i][(time_array > min_time)
                                & (Vm_inh[i] < -50)].std())

    fig1, AX1 = plt.subplots(1, 3, figsize=(3, 2))  # for means
    fig2, AX2 = plt.subplots(1, 3, figsize=(3, 2))  # for std

    AX1[0].bar([0],
               np.array(MEAN_VM).mean() + 65,
               yerr=np.array(MEAN_VM).std(),
               color='w',
               edgecolor='k',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='k'))
    AX2[0].bar([0],
               np.array(STD_VM).mean(),
               yerr=np.array(STD_VM).std(),
               color='w',
               edgecolor='k',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='k'),
               label='$V_m$')
    AX1[0].bar([1], [1e3 * muV + 65], color='gray', alpha=.5, label='$V_m$')
    AX2[0].bar([1], [1e3 * sV], color='gray', alpha=.5)

    #set_plot(AX1[0], ['left'], xticks=[], ylim=[0,11], yticks=[0, 5, 10], yticks_labels=['-65', '-60', '-55'], ylabel='mean (mV)')
    #set_plot(AX2[0], ['left'], xticks=[], ylim=[0,5], yticks=[0, 2, 4], ylabel='std. dev. (mV)')

    ### EXCITATORY CONDUCTANCE
    MEAN_GE, STD_GE, KYRT_GE = [], [], []
    for i in range(len(Ge_exc)):
        MEAN_GE.append(Ge_exc[i][(time_array > min_time)].mean())
        MEAN_GE.append(Ge_inh[i][(time_array > min_time)].mean())
        STD_GE.append(Ge_exc[i][(time_array > min_time)].std())
        STD_GE.append(Ge_inh[i][(time_array > min_time)].std())

    AX1[1].bar([0],
               np.array(MEAN_GE).mean(),
               yerr=np.array(MEAN_GE).std(),
               color='w',
               edgecolor='g',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='g'),
               label='num. sim.')
    AX2[1].bar([0],
               np.array(STD_GE).mean(),
               yerr=np.array(STD_GE).std(),
               color='w',
               edgecolor='g',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='g'),
               label='exc.')
    AX1[1].bar([1], [1e9 * mGe], color='g', label='mean field \n pred.')
    AX2[1].bar([1], [1e9 * sGe], color='g', label='exc.')

    #set_plot(AX1[1], ['left'], xticks=[], yticks=[0,15,30], ylabel='mean (nS)')
    #set_plot(AX2[1], ['left'], xticks=[], yticks=[0,5,10], ylabel='std. dev. (nS)')

    ### INHIBITORY CONDUCTANCE
    MEAN_GI, STD_GI, KYRT_GI = [], [], []
    for i in range(len(Gi_exc)):
        MEAN_GI.append(Gi_exc[i][(time_array > min_time)].mean())
        MEAN_GI.append(Gi_inh[i][(time_array > min_time)].mean())
        STD_GI.append(Gi_exc[i][(time_array > min_time)].std())
        STD_GI.append(Gi_inh[i][(time_array > min_time)].std())

    AX1[2].bar([0],
               np.array(MEAN_GI).mean(),
               yerr=np.array(MEAN_GI).std(),
               color='w',
               edgecolor='r',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='r'),
               label='num. sim.')
    AX2[2].bar([0],
               np.array(STD_GI).mean(),
               yerr=np.array(STD_GI).std(),
               color='w',
               edgecolor='r',
               lw=3,
               error_kw=dict(elinewidth=3, ecolor='r'),
               label='inh.')
    AX1[2].bar([1], [1e9 * mGi], color='r', label='mean field \n pred.')
    AX2[2].bar([1], [1e9 * sGi], color='r', label='inh.')

    #set_plot(AX1[2], ['left'], xticks=[], yticks=[0,15,30], ylabel='mean (nS)')
    #set_plot(AX2[2], ['left'], xticks=[], yticks=[0,5,10], ylabel='std. dev. (nS)')

    ### POPULATION RATE ###

    fig, ax = plt.subplots(figsize=(4, 3))
    # we bin the population rate
    N0 = int(BIN / (time_array[1] - time_array[0]))
    N1 = int((time_array[cond_t][-1] - time_array[cond_t][0]) / BIN)
    time_array = time_array[cond_t][:N0 * N1].reshape((N1, N0)).mean(axis=1)
    rate_exc = rate_exc[cond_t][:N0 * N1].reshape((N1, N0)).mean(axis=1)
    rate_inh = rate_inh[cond_t][:N0 * N1].reshape((N1, N0)).mean(axis=1)
    rate_array = rate_array[cond_t][:N0 * N1].reshape((N1, N0)).mean(axis=1)

    hh, bb = np.histogram(rate_exc, bins=3, normed=True)
    ax.bar(.5 * (bb[:-1] + bb[1:]),
           hh,
           color='w',
           width=bb[1] - bb[0],
           edgecolor='g',
           lw=3,
           label='exc.',
           alpha=.7)
    hh, bb = np.histogram(rate_inh, bins=5, normed=True)
    ax.bar(.5 * (bb[:-1] + bb[1:]),
           hh,
           color='w',
           width=bb[1] - bb[0],
           edgecolor='r',
           lw=3,
           label='inh',
           alpha=.7)

    ax.fill_between(xfe, 0 * fe_pred, fe_pred, color='g', alpha=.8)
    ax.fill_between(xfi, 0 * fi_pred, fi_pred, color='r', alpha=.8)

    #set_plot(plt.gca(), ['bottom', 'left'], xlabel='pop. activity (Hz)', yticks=[], ylabel='density')

    for ax in AX1:
        ax.legend()
    for ax in AX2:
        ax.legend()

    return [fig, fig1, fig2]
Ejemplo n.º 5
0
def Euler_method_for_ring_model(NRN1, NRN2, NTWK, RING, STIM, BIN=5e-3,\
                                custom_ring_params={}, custom_stim_params={}):
    """
    Given two afferent rate input excitatory and inhibitory respectively
    this function computes the prediction of a first order rate model
    (e.g. Wilson and Cowan in the 70s, or 1st order of El Boustani and
    Destexhe 2009) by implementing a simple Euler method
    IN A 2D GRID WITH LATERAL CONNECTIVITY
    the number of laterally connected units is 'connected_neighbors'
    there is an exponential decay of the strength 'decay_connect'
    ----------------------------------------------------------------
    the core of the formalism is the transfer function, see Zerlaut et al. 2015
    it can also be Kuhn et al. 2004 or Amit & Brunel 1997
    -----------------------------------------------------------------
    nu_0 is the starting value value of the recurrent network activity
    it should be the fixed point of the network dynamics
    -----------------------------------------------------------------
    t is the discretization used to solve the euler method
    BIN is the initial sampling bin that should correspond to the
    markovian time scale where the formalism holds (~5ms)
    
    conduction_velocity=0e-3, in ms per pixel !!!
    """

    print('----- loading parameters [...]')
    M = get_connectivity_and_synapses_matrix(NTWK, SI_units=True)
    ext_drive = M[0, 0]['ext_drive']
    params = get_neuron_params(NRN2, SI_units=True)
    reformat_syn_parameters(params, M)
    afferent_exc_fraction = M[0, 0]['afferent_exc_fraction']

    print('----- ## we look for the fixed point [...]')
    try:
        fe0, fi0, muV0 = np.load("fixed_point_data_TO_BE_REMOVED.npy")
        print(
            "/!\\ STORED FIXED POINT DATA LOADED, check if not a different config /!\\"
        )
    except IOError:
        fe0, fi0 = find_fixed_point_first_order(NRN1,
                                                NRN2,
                                                NTWK,
                                                exc_aff=ext_drive)
        muV0, _, _, _ = get_fluct_regime_vars(fe0 + ext_drive, fi0,
                                              *pseq_params(params))
        np.save('fixed_point_data_TO_BE_REMOVED.npy', [fe0, fi0, muV0])

    print('----- ## we load the transfer functions [...]')
    TF1, TF2 = load_transfer_functions(NRN1, NRN2, NTWK)

    print('----- ## ring initialisation [...]')
    X, Xn_exc, Xn_inh, exc_connected_neighbors, exc_decay_connect, inh_connected_neighbors,\
        inh_decay_connect, conduction_velocity = ring.pseq_ring_params(RING, custom=custom_ring_params)

    print('----- ## stimulation initialisation [...]')
    t, Fe_aff = stim.get_stimulation(X, STIM, custom=custom_stim_params)
    Fi_aff = 0 * Fe_aff  # no afferent inhibition yet

    print('----- ## model initialisation [...]')
    Fe, Fi, muVn = 0 * Fe_aff + fe0, 0 * Fe_aff + fi0, 0 * Fe_aff + muV0

    print('----- starting the temporal loop [...]')
    dt = t[1] - t[0]

    # constructing the Euler method for the activity rate
    for i_t in range(len(t) - 1):  # loop over time

        for i_x in range(len(X)):  # loop over pixels

            # afferent excitation + exc DRIVE
            fe = (1 - afferent_exc_fraction) * Fe_aff[
                i_t, i_x] + ext_drive  # common both to exc and inh
            fe_pure_exc = (2 * afferent_exc_fraction -
                           1) * Fe_aff[i_t, i_x]  # only for excitatory pop
            fi = 0  #  0 for now.. !

            # EXC --- we add the recurrent activity and the lateral interactions
            for i_xn in Xn_exc:  # loop over neighboring excitatory pixels
                # calculus of the weight
                exc_weight = ring.gaussian_connectivity(
                    i_xn, 0., exc_decay_connect)
                # then we have folded boundary conditions (else they donot
                # have all the same number of active neighbors !!)
                i_xC = (i_x + i_xn) % (len(X))

                if i_t > int(abs(i_xn) / conduction_velocity / dt):
                    it_delayed = i_t - int(
                        abs(i_xn) / conduction_velocity / dt)
                else:
                    it_delayed = 0

                fe += exc_weight * Fe[it_delayed, i_xC]

            # INH --- we add the recurrent activity and the lateral interactions
            for i_xn in Xn_inh:  # loop over neighboring inhibitory pixels
                # calculus of the weight
                inh_weight = ring.gaussian_connectivity(
                    i_xn, 0., inh_decay_connect)
                # then we have folded boundary conditions (else they donot
                # have all the same number of active neighbors !!)
                i_xC = (i_x + i_xn) % (len(X))

                if i_t > int(abs(i_xn) / conduction_velocity / dt):
                    it_delayed = i_t - int(
                        abs(i_xn) / conduction_velocity / dt)
                else:
                    it_delayed = 0

                fi += inh_weight * Fi[it_delayed, i_xC]

            ## NOTE THAT NO NEED TO SCALE : fi*= gei*pconnec*Ntot and fe *= (1-gei)*pconnec*Ntot
            ## THIS IS DONE IN THE TRANSFER FUNCTIONS !!!!

            # now we can guess the rate model output
            muVn[i_t + 1,
                 i_x], _, _, _ = get_fluct_regime_vars(fe, fi,
                                                       *pseq_params(params))
            Fe[i_t + 1,
               i_x] = Fe[i_t, i_x] + dt / BIN * (TF1(fe + fe_pure_exc, fi) -
                                                 Fe[i_t, i_x])
            Fi[i_t + 1,
               i_x] = Fi[i_t, i_x] + dt / BIN * (TF2(fe, fi) - Fi[i_t, i_x])

    print('----- temporal loop over !')

    return t, X, Fe_aff, Fe, Fi, np.abs((muVn - muV0) / muV0)
Ejemplo n.º 6
0
 def TF2(fe, fi):
     return TF_my_template(fe, fi, *pseq_params(params2))
Ejemplo n.º 7
0
 def TF1(fe, fi):
     return TF_my_template(fe, fi, *pseq_params(params1))