Ejemplo n.º 1
0
    def test_resize_with_fit(self):
        filename = os.path.join(BASE_DIR, 'terminal.gif')  # 35x28
        base_ops = {'w': 50, 'h': 100}

        operations = copy(base_ops)
        operations.update({'fit': 'crop'})
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual((operations['w'], operations['h']), img.size)

        #
        # `clip` == `bounds` which will fit only one the
        #  dimensions in case the aspect ratio is different
        #
        operations = copy(base_ops)
        operations.update({'fit': 'bounds'})
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual((operations['w'], 40), img.size)

        operations = copy(base_ops)
        operations.update({'fit': 'clip'})
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual((operations['w'], 40), img.size)
Ejemplo n.º 2
0
    def test_quality(self):
        filename = os.path.join(BASE_DIR, 'lincoln.jpg')
        w, h = PIL.Image.open(filename).size
        #
        # applying no transformation with the default quality
        #
        operations = {'w': w, 'h': h}
        output = image_transform(filename, operations)
        out_file_size = os.stat(output).st_size

        operations = {'q': DEFAULT_QUALITY_RATE - 5}
        output = image_transform(filename, operations)
        self.assertLess(os.stat(output).st_size, out_file_size)
Ejemplo n.º 3
0
    def test_dpr(self):
        filename = os.path.join(BASE_DIR, 'lincoln.jpg')
        w, h = PIL.Image.open(filename).size
        dpr = 2
        operations = {'dpr': dpr}
        output = image_transform(filename, operations)
        ow, oh = PIL.Image.open(output).size
        self.assertEqual((w*dpr, h*dpr), (ow, oh))

        scale = 2
        w, h = w*scale, h*scale
        operations = {'dpr': dpr, 'w': w, 'h': h}
        output = image_transform(filename, operations)
        ow, oh = PIL.Image.open(output).size
        self.assertEqual((w*dpr, h*dpr), (ow, oh))
Ejemplo n.º 4
0
    def test_resize(self):
        filename = os.path.join(BASE_DIR, 'terminal.gif')  # 35x28
        operations = {'w': 50, 'h': 100}
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual((operations['w'], operations['h']), img.size)

        operations = {'w': 25}
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual(operations['w'], img.size[0])

        operations = {'h': 25}
        output = image_transform(filename, operations)
        img = PIL.Image.open(output)
        self.assertEqual(operations['h'], img.size[1])
Ejemplo n.º 5
0
def main(image_path):
    """ Main runs the program to average the
    faces in a given file path, displaying
    the 'average' face at the end.

    **Parameters**

    image_path: str
        A string indicating the filepath containing
        the images to be 'averaged'

    **Returns**

    None
    """
    print('Opening {} and checking for faces...'.format(image_path))
    print('Processing images...')
    face_check(image_path)
    images = process_images(image_path)
    print('Finding facial landmarks...')
    allandmarks = find_landmarks(image_path)
    print('Scaling images to common space...')
    scaled_images = scale_images(images, allandmarks)
    pointsAvg, pointsNorm = scale_landmarks(images, allandmarks)
    print('Triangulating points...')
    dt = calculateDelaunayTriangles(np.array(pointsAvg))
    print('Averaging faces...')
    output = image_transform(scaled_images, pointsNorm, pointsAvg, dt)
    print('Success!')
    cv2.imshow('image', output)
    cv2.waitKey(0)
Ejemplo n.º 6
0
    def test_auto_compress(self):
        filename = os.path.join(BASE_DIR, 'lincoln.jpg')
        w, h = PIL.Image.open(filename).size
        in_file_size = os.stat(filename).st_size

        w, h = PIL.Image.open(filename).size
        operations = {'q': AGRESSIVE_QUALITY_RATE}
        output = image_transform(filename, operations)
        size_with_metadata = os.stat(output).st_size
        self.assertLess(os.stat(output).st_size, in_file_size)

        # applies agressive quality and remove metadata
        operations = {'auto': 'compress'}
        output = image_transform(filename, operations)
        self.assertLess(os.stat(output).st_size, in_file_size)
        size_with_no_metadata = os.stat(output).st_size
        self.assertLess(size_with_no_metadata, size_with_metadata)
Ejemplo n.º 7
0
 def test_all_ops(self):
     for img in ALL_IMAGES:
         filename = os.path.join(BASE_DIR, img)
         side = 100
         dpr = 2
         operations = {'w': side,'h': side, 'fit': 'crop', 'fm': 'gif', 'dpr': dpr, 'q': 50, 'auto': 'compress'}
         output = image_transform(filename, operations)
         ow, oh = PIL.Image.open(output).size
         self.assertEqual((side*dpr, side*dpr), (ow, oh))
Ejemplo n.º 8
0
    def test_format(self):

        filename = os.path.join(BASE_DIR, 'lincoln.jpg')

        in_file_size = os.stat(filename).st_size
        operations = {'fm': 'png'}
        output = image_transform(filename, operations)
        self.assertIn('png', output)
        self.assertGreater(os.stat(output).st_size, in_file_size)

        filename = os.path.join(BASE_DIR, 'terminal.gif')
        in_file_size = os.stat(filename).st_size
        operations = {'fm': 'jpeg', 'q': 10}
        output = image_transform(filename, operations)
        self.assertIn('jpeg', output)
        self.assertGreater(os.stat(output).st_size, in_file_size)

        for fm in SUPPORTED_FORMATS:
            #FIXME: https://github.com/caffeinetv/snappy/issues/10
            if fm != 'webp':
                operations = {'fm': fm}
                output = image_transform(filename, operations)
                self.assertIn(fm, output)
Ejemplo n.º 9
0
def main(image_path):
    """ Main runs the program to average the
    faces in a given file path, saving the
    averaged image in an output image file
    and clearing the original image path.

    **Parameters**

    image_path: str
        A string indicating the filepath containing
        the images to be 'averaged'

    **Returns**

    None
    """
    print('Opening {} and checking for faces...'.format(image_path))
    print('Processing images...')
    face_check(image_path)
    images = process_images(image_path)
    print('Finding facial landmarks...')
    allandmarks = find_landmarks(image_path)
    print('Scaling images to common space...')
    scaled_images = scale_images(images, allandmarks)
    pointsAvg, pointsNorm = scale_landmarks(images, allandmarks)
    print('Triangulating points...')
    dt = calculateDelaunayTriangles(np.array(pointsAvg))
    print('Averaging faces...')
    output = image_transform(scaled_images, pointsNorm, pointsAvg, dt)
    print('Success!')
    output = output * 255
    output = output.astype('uint8')
    cv2.imwrite('static/outputimage/average_face.png', output)
    os.chdir('./static/faces')
    for file in os.listdir('.'):
        print(file)
        if file.endswith('.jpg'):
            os.remove(file)
        elif file.endswith('.tiff'):
            os.remove(file)
        elif file.endswith('.jpeg'):
            os.remove(file)
        elif file.endswith('.png'):
            os.remove(file)
        else:
            continue
    os.chdir('../..')