Ejemplo n.º 1
0
def train(config: Transformer,
          model: Transformer,
          optimizer: ScheduledOptim,
          train_loader: DataLoader,
          eval_loader: DataLoader = None,
          device='cpu'):
    """train function"""
    model.train()
    best_eval_accuracy = -float('Inf')
    for epoch in range(config.epochs):
        logger.info("Epoch: {}".format(epoch))
        total_loss, n_word_total, n_word_correct = 0, 0, 0
        for ids, sample in enumerate(tqdm(train_loader)):
            for k, v in sample.items():
                sample[k] = v.to(device)
            input_ids, decoder_input_ids, decoder_target_ids = (
                sample['input_ids'], sample['decode_input_ids'],
                sample['decode_label_ids'])
            optimizer.zero_grad()
            logits = model(input_ids, decoder_input_ids)
            loss, n_correct, n_word = cal_performance(
                logits,
                gold=decoder_target_ids,
                trg_pad_idx=config.pad_idx,
                smoothing=config.label_smoothing)
            loss.backward()
            optimizer.step_and_update_lr()

            # note keeping
            n_word_total += n_word
            n_word_correct += n_correct
            total_loss += loss.item()
        loss_per_word = total_loss / n_word_total
        accuracy = n_word_correct / n_word_total
        logger.info("The {} epoch train loss: {}, train accuray: {}".format(
            epoch, loss_per_word, accuracy))

        if eval_loader is not None:
            eval_loss, eval_accuracy = evaluate(config,
                                                model,
                                                eval_loader=eval_loader,
                                                device=device)
            if eval_accuracy > best_eval_accuracy:
                best_eval_accuracy = eval_accuracy

                # 保存最佳模型
                model_save = model.module if hasattr(model,
                                                     "module") else model
                model_file = os.path.join(config.save_dir,
                                          "checkpoint_{}.pt".format(epoch))
                torch.save(model_save.state_dict(), f=model_file)

        if epoch % config.save_epoch == 0:
            model_save = model.module if hasattr(model, "module") else model
            model_file = os.path.join(config.save_dir,
                                      "checkpoint_{}.pt".format(epoch))
            torch.save(model_save.state_dict(), f=model_file)

    return model
Ejemplo n.º 2
0
def train_per_epoch(opt: Namespace, model: Transformer,
                    optimizer: ScheduledAdam, train_data, src_vocab,
                    trg_vocab) -> dict:
    model.train()
    start_time = datetime.now()
    total_loss = total_word = total_corrected_word = 0

    for i, batch in tqdm(enumerate(train_data),
                         total=len(train_data),
                         leave=False):
        src_input, trg_input, y_true = _prepare_batch_data(batch, opt.device)

        # Forward
        optimizer.zero_grad()
        y_pred = model(src_input, trg_input)

        # DEBUG
        pred_sentence = to_sentence(y_pred[0], trg_vocab)
        true_sentence = to_sentence(batch.trg[:, 0], trg_vocab)
        print(pred_sentence)
        print(true_sentence)
        import ipdb
        ipdb.set_trace()

        # Backward and update parameters
        loss = calculate_loss(y_pred, y_true, opt.trg_pad_idx, trg_vocab)
        n_word, n_corrected = calculate_performance(y_pred, y_true,
                                                    opt.trg_pad_idx)
        loss.backward()
        optimizer.step()

        # Training Logs
        total_loss += loss.item()
        total_word += n_word
        total_corrected_word += n_corrected

    loss_per_word = total_loss / total_word
    accuracy = total_corrected_word / total_word

    return {
        'total_seconds': (datetime.now() - start_time).total_seconds(),
        'total_loss': total_loss,
        'total_word': total_word,
        'total_corrected_word': total_corrected_word,
        'loss_per_word': loss_per_word,
        'accuracy': accuracy
    }