Ejemplo n.º 1
0
    def call(self, inputs, training=None, **kwargs):
        inputs, memory = inputs
        batch_size = K.shape(inputs)[0]
        seq_len = K.shape(inputs)[1]
        mem_mask = K.tile(K.ones_like(memory[:, :, :1], dtype=K.floatx()), [1, 1, seq_len])

        # Build content mask with random permutation
        ranges = K.tile(K.expand_dims(K.arange(0, seq_len), axis=-1), [1, batch_size])
        if self.enabled:
            shuffle = random_shuffle(ranges)
        else:
            shuffle = ranges
        if self.directional:
            shuffled = K.in_train_phase(shuffle, ranges, training)
        else:
            if self.enabled:
                shuffled = K.in_train_phase(shuffle, ranges + seq_len, training)
            else:
                shuffled = ranges + seq_len
        ranges = K.expand_dims(K.permute_dimensions(ranges, [1, 0]), axis=-1)
        shuffled = K.expand_dims(K.permute_dimensions(shuffled, [1, 0]), axis=1)
        content_mask = K.cast(ranges <= shuffled, dtype=K.floatx())

        # Build query mask based on content mask
        ranges = K.arange(0, seq_len)
        eye = K.equal(K.expand_dims(ranges, axis=0), K.expand_dims(ranges, axis=-1))
        eye = K.expand_dims(K.cast(eye, dtype=K.floatx()), axis=0)
        query_mask = content_mask * (1.0 - eye)

        content_mask = K.concatenate([mem_mask, content_mask], axis=1)
        query_mask = K.concatenate([mem_mask, query_mask], axis=1)
        return [
            K.permute_dimensions(content_mask, [0, 2, 1]),
            K.permute_dimensions(query_mask, [0, 2, 1]),
        ]
 def call(self, inputs, mask=None, **kwargs):
     if isinstance(inputs, list):
         query, key, value = inputs
     else:
         query = key = value = inputs
     if isinstance(mask, list):
         mask = mask[1]
     feature_dim = K.shape(query)[-1]
     e = K.batch_dot(query, key, axes=2) / K.sqrt(
         K.cast(feature_dim, dtype=K.floatx()))
     e = K.exp(e - K.max(e, axis=-1, keepdims=True))
     if self.history_only:
         query_len, key_len = K.shape(query)[1], K.shape(key)[1]
         indices = K.expand_dims(K.arange(0, key_len), axis=0)
         upper = K.expand_dims(K.arange(0, query_len), axis=-1)
         e *= K.expand_dims(K.cast(indices <= upper, K.floatx()), axis=0)
     if mask is not None:
         e *= K.cast(K.expand_dims(mask, axis=-2), K.floatx())
     s = K.sum(e, axis=-1, keepdims=True)
     s += K.cast(K.equal(s, 0.0), K.floatx())
     a = e / s
     v = K.batch_dot(a, value)
     if self.return_attention:
         return [v, a]
     return v
Ejemplo n.º 3
0
 def _attention_regularizer(self, attention):
     batch_size = K.cast(K.shape(attention)[0], K.floatx())
     input_len = K.shape(attention)[-1]
     indices = K.expand_dims(K.arange(0, input_len), axis=0)
     diagonal = K.expand_dims(K.arange(0, input_len), axis=-1)
     eye = K.cast(K.equal(indices, diagonal), K.floatx())
     return self.attention_regularizer_weight * K.sum(K.square(K.batch_dot(
         attention,
         K.permute_dimensions(attention, (0, 2, 1))) - eye)) / batch_size
Ejemplo n.º 4
0
 def call(self, inputs, **kwargs):
     length = K.shape(inputs[0])[1] + K.shape(inputs[1])[1]
     inputs = K.tile(
         K.expand_dims(K.arange(length - 1, -1, -1, dtype=K.floatx()),
                       axis=0),
         [K.shape(inputs[0])[0], 1],
     )
     if self.clamp_len is not None:
         inputs = K.clip(inputs, min_value=0, max_value=self.clamp_len)
     inputs = K.expand_dims(inputs, axis=-1)
     output_dim = K.cast(self.output_dim, K.floatx())
     ranges = K.expand_dims(K.arange(0.0, self.output_dim, 2.0),
                            axis=0) / output_dim
     inverse = 1.0 / K.pow(10000.0, ranges)
     positions = inputs * inverse
     return K.concatenate([K.sin(positions), K.cos(positions)], axis=-1)
Ejemplo n.º 5
0
 def call(self, inputs, **kwargs):
     q_len, m_len = K.shape(inputs[0])[1], K.shape(inputs[1])[1]
     k_len = q_len + m_len
     start, stop = k_len, -1
     if not self.directional:
         stop = -q_len
     inputs = K.tile(
         K.expand_dims(K.arange(start, stop, -1, dtype=K.floatx()), axis=0),
         [K.shape(inputs[0])[0], 1],
     )
     if self.clamp_len is not None:
         inputs = K.clip(inputs, min_value=0, max_value=self.clamp_len)
     inputs = K.expand_dims(inputs, axis=-1)
     output_dim = K.cast(self.output_dim, K.floatx())
     ranges = K.expand_dims(K.arange(0.0, self.output_dim, 2.0),
                            axis=0) / output_dim
     inverse = 1.0 / K.pow(10000.0, ranges)
     positions = inputs * inverse
     return K.concatenate([K.sin(positions), K.cos(positions)], axis=-1)
Ejemplo n.º 6
0
 def call(self, inputs, mask=None):
     input_shape = K.shape(inputs)
     if self.mode == self.MODE_ADD:
         batch_size, seq_len, output_dim = input_shape[0], input_shape[
             1], input_shape[2]
         pos_input = K.tile(K.expand_dims(K.arange(0, seq_len), axis=0),
                            [batch_size, 1])
     elif self.mode == self.MODE_CONCAT:
         batch_size, seq_len, output_dim = input_shape[0], input_shape[
             1], self.output_dim
         pos_input = K.tile(K.expand_dims(K.arange(0, seq_len), axis=0),
                            [batch_size, 1])
     else:
         output_dim = self.output_dim
         pos_input = inputs
     if K.dtype(pos_input) != K.floatx():
         pos_input = K.cast(pos_input, K.floatx())
     evens = K.arange(0, output_dim // 2) * 2
     odds = K.arange(0, output_dim // 2) * 2 + 1
     even_embd = K.sin(
         K.dot(
             K.expand_dims(pos_input, -1),
             K.expand_dims(
                 1.0 / K.pow(
                     10000.0,
                     K.cast(evens, K.floatx()) /
                     K.cast(output_dim, K.floatx())), 0)))
     odd_embd = K.cos(
         K.dot(
             K.expand_dims(pos_input, -1),
             K.expand_dims(
                 1.0 / K.pow(
                     10000.0,
                     K.cast((odds - 1), K.floatx()) /
                     K.cast(output_dim, K.floatx())), 0)))
     embd = K.stack([even_embd, odd_embd], axis=-1)
     output = K.reshape(embd, [-1, K.shape(inputs)[1], output_dim])
     if self.mode == self.MODE_CONCAT:
         output = K.concatenate([inputs, output], axis=-1)
     if self.mode == self.MODE_ADD:
         output += inputs
     return output
Ejemplo n.º 7
0
    def call(self, inputs, mask=None, **kwargs):
        input_len = K.shape(inputs)[1]

        if self.attention_type == SeqSelfAttention.ATTENTION_TYPE_ADD:
            e = self._call_additive_emission(inputs)
        elif self.attention_type == SeqSelfAttention.ATTENTION_TYPE_MUL:
            e = self._call_multiplicative_emission(inputs)

        if self.attention_activation is not None:
            e = self.attention_activation(e)
        e = K.exp(e - K.max(e, axis=-1, keepdims=True))
        if self.attention_width is not None:
            if self.history_only:
                lower = K.arange(0, input_len) - (self.attention_width - 1)
            else:
                lower = K.arange(0, input_len) - self.attention_width // 2
            lower = K.expand_dims(lower, axis=-1)
            upper = lower + self.attention_width
            indices = K.expand_dims(K.arange(0, input_len), axis=0)
            e = e * K.cast(lower <= indices, K.floatx()) * K.cast(indices < upper, K.floatx())
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            mask = K.expand_dims(mask)
            e = K.permute_dimensions(K.permute_dimensions(e * mask, (0, 2, 1)) * mask, (0, 2, 1))

        # a_{t} = \text{softmax}(e_t)
        s = K.sum(e, axis=-1, keepdims=True)
        a = e / (s + K.epsilon())

        # l_t = \sum_{t'} a_{t, t'} x_{t'}
        v = K.batch_dot(a, inputs)
        if self.attention_regularizer_weight > 0.0:
            self.add_loss(self._attention_regularizer(a))

        if self.return_attention:
            return [v, a]
        return v