def init_data(self, use_cuda: bool):
            test_device = torch.device('cuda:0') if use_cuda else \
                torch.device('cpu:0')

            torch.set_grad_enabled(False)
            cfg = AlbertConfig()
            self.torch_embedding = AlbertEmbeddings(cfg)

            self.torch_embedding.eval()

            if use_cuda:
                self.torch_embedding.to(test_device)

            self.turbo_embedding = turbo_transformers.AlbertEmbeddings.from_torch(
                self.torch_embedding)

            input_ids = torch.randint(low=0,
                                      high=cfg.vocab_size - 1,
                                      size=(batch_size, seq_length),
                                      dtype=torch.long,
                                      device=test_device)
            position_ids = torch.arange(seq_length,
                                        dtype=torch.long,
                                        device=input_ids.device)

            position_ids = position_ids.repeat(batch_size, 1)
            token_type_ids = torch.zeros_like(input_ids, dtype=torch.long)

            return input_ids, position_ids, token_type_ids
Ejemplo n.º 2
0
    class TestAlbertEmbedding(unittest.TestCase):
        def init_data(self, use_cuda: bool):
            test_device = torch.device('cuda:0') if use_cuda else \
                torch.device('cpu:0')

            torch.set_grad_enabled(False)
            cfg = AlbertConfig(hidden_size=768,
                               num_attention_heads=12,
                               intermediate_size=3072)
            self.torch_embedding = AlbertEmbeddings(cfg)

            self.torch_embedding.eval()

            if use_cuda:
                self.torch_embedding.to(test_device)

            self.turbo_embedding = turbo_transformers.AlbertEmbeddings.from_torch(
                self.torch_embedding)

            input_ids = torch.randint(low=0,
                                      high=cfg.vocab_size - 1,
                                      size=(batch_size, seq_length),
                                      dtype=torch.long,
                                      device=test_device)
            position_ids = torch.arange(seq_length,
                                        dtype=torch.long,
                                        device=input_ids.device)

            position_ids = position_ids.repeat(batch_size, 1)
            token_type_ids = torch.zeros_like(input_ids, dtype=torch.long)

            return input_ids, position_ids, token_type_ids

        def check_torch_and_turbo(self, use_cuda):
            input_ids, position_ids, token_type_ids = self.init_data(use_cuda)

            device = "GPU" if use_cuda else "CPU"
            num_iter = 100
            torch_model = lambda: self.torch_embedding(
                input_ids, token_type_ids, position_ids)
            torch_result, torch_qps, torch_time = test_helper.run_model(
                torch_model, use_cuda, num_iter)
            print(f"AlbertEmbeddings \"({batch_size},{seq_length:03})\" ",
                  f"{device} Torch QPS,  {torch_qps}, time, {torch_time}")

            turbo_model = lambda: self.turbo_embedding(input_ids, position_ids,
                                                       token_type_ids)
            turbo_result, turbo_qps, turbo_time = test_helper.run_model(
                turbo_model, use_cuda, num_iter)
            print(f"AlbertEmbeddings \"({batch_size},{seq_length:03})\" ",
                  f"{device} Turbo QPS,  {turbo_qps}, time, {turbo_time}")

            self.assertTrue(
                torch.max(torch.abs(torch_result - turbo_result)) < 1e-5)

        def test_embedding(self):
            self.check_torch_and_turbo(use_cuda=False)
            if torch.cuda.is_available() and \
                turbo_transformers.config.is_compiled_with_cuda():
                self.check_torch_and_turbo(use_cuda=True)
Ejemplo n.º 3
0
    def __init__(self, config):
        super(ESIM, self).__init__(config)
        self.num_labels = config.num_labels
        self.dropout = config.dropout
        self._word_embedding = AlbertEmbeddings(config)
        self._encoding = Seq2SeqEncoder(nn.LSTM,
                                        config.embedding_size,
                                        config.hidden_size,
                                        bidirectional=True)
        if self.dropout:
            self._rnn_dropout = RNNDropout(p=config.dropout)
        self._attention = SoftmaxAttention()
        self._projection = nn.Sequential(
            nn.Linear(4 * 2 * config.hidden_size, config.hidden_size),
            nn.ReLU())
        self._composition = Seq2SeqEncoder(nn.LSTM,
                                           config.hidden_size,
                                           config.hidden_size,
                                           bidirectional=True)

        self._classification = nn.Sequential(
            nn.Dropout(p=config.dropout),
            nn.Linear(2 * 4 * config.hidden_size, config.hidden_size),
            nn.ReLU(), nn.Dropout(p=config.dropout),
            nn.Linear(config.hidden_size, config.num_labels))

        # Initialize all weights and biases in the model.
        self.apply(_init_esim_weights)
Ejemplo n.º 4
0
    def __init__(self, config):
        super(AlbertModel, self).__init__(config)

        self.config = config
        self.embeddings = AlbertEmbeddings(config)
        self.encoder = AlbertTransformer(config)
        self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
        self.pooler_activation = nn.Tanh()

        self.init_weights()