Ejemplo n.º 1
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    training_args.do_train = True
    # training_args.do_eval = True
    data_args.mlm = True

    if data_args.eval_data_file is None and training_args.do_eval:
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument.")

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    training_args.output_dir = os.environ["SM_OUTPUT_DATA_DIR"]
    input_path = os.environ["SM_CHANNEL_TRAINING"]
    folder = "wikitext-2-raw-v1"
    cmd = "tar xzf %s -C %s" % (input_path + "/" + folder + ".tar.gz",
                                input_path)

    assert os.system(cmd) == 0
    data_folder = f"{input_path}/{folder}"

    data_args.train_data_file = f"{data_folder}/wikitext-2-raw/{data_args.train_data_file}"
    data_args.eval_data_file = f"{data_folder}/wikitext-2-raw/{data_args.eval_data_file}"
    checkpoint_path = training_args.output_dir + "/checkpoints"

    project_name = "language-modeling"
    os.environ["WANDB_PROJECT"] = project_name
    wandb.init(
        project=project_name
    )  # TODO(tilo): is this really necessary? should be done by ML-library ( here transformers)
    assert wandb.api.api_key is not None
    assert is_wandb_available(
    )  # TODO(tilo): somehow I had issues, which seem to have resolved themselves

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name")

    if model_args.model_name_or_path:
        model = AutoModelWithLMHead.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelWithLMHead.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    if config.model_type in ["bert", "roberta", "distilbert", "camembert"
                             ] and not data_args.mlm:
        raise ValueError(
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling).")

    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)

    # Get datasets

    train_dataset = (get_dataset(
        data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir)
                     if training_args.do_train else None)
    eval_dataset = (get_dataset(data_args,
                                tokenizer=tokenizer,
                                evaluate=True,
                                cache_dir=model_args.cache_dir)
                    if training_args.do_eval else None)
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
        )
    else:
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm=data_args.mlm,
            mlm_probability=data_args.mlm_probability)

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )

    # Training
    if training_args.do_train:
        model_path = (model_args.model_name_or_path
                      if model_args.model_name_or_path is not None
                      and os.path.isdir(model_args.model_name_or_path) else
                      None)
        trainer.train(model_path=model_path)
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["eval_loss"])
        result = {"perplexity": perplexity}

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results_lm.txt")
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))

        results.update(result)

    return results
def main():
    # See all possible arguments in src/transformers/args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()

        # set up weights and biases if available
        if is_wandb_available():
            import wandb

            wandb.init(project=args.output_dir.split("/")[-1])
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub and not args.preprocessing_only:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # 1. Download and create train, validation dataset
    # We load all dataset configuration and datset split pairs passed in
    # ``args.dataset_config_names`` and ``args.dataset_split_names``
    datasets_splits = []
    for dataset_config_name, train_split_name in zip(args.dataset_config_names, args.dataset_split_names):
        # load dataset
        dataset_split = load_dataset(
            args.dataset_name,
            dataset_config_name,
            split=train_split_name,
            cache_dir=args.cache_dir,
        )
        datasets_splits.append(dataset_split)

    # Next, we concatenate all configurations and splits into a single training dataset
    raw_datasets = DatasetDict()
    if len(datasets_splits) > 1:
        raw_datasets["train"] = concatenate_datasets(datasets_splits).shuffle(seed=args.seed)
    else:
        raw_datasets["train"] = datasets_splits[0]

    # Take ``args.validation_split_percentage`` from the training dataset for the validation_split_percentage
    num_validation_samples = raw_datasets["train"].num_rows * args.validation_split_percentage // 100

    if num_validation_samples == 0:
        raise ValueError(
            "`args.validation_split_percentage` is less than a single sample "
            f"for {len(raw_datasets['train'])} training samples. Increase "
            "`args.num_validation_split_percentage`. "
        )

    raw_datasets["validation"] = raw_datasets["train"].select(range(num_validation_samples))
    raw_datasets["train"] = raw_datasets["train"].select(range(num_validation_samples, raw_datasets["train"].num_rows))

    # 2. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_name_or_path)

    # make sure that dataset decodes audio with correct sampling rate
    raw_datasets = raw_datasets.cast_column(
        args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

    # only normalized-inputs-training is supported
    if not feature_extractor.do_normalize:
        raise ValueError(
            "Training is only supported for normalized inputs. Make sure ``feature_extractor.do_normalize == True``"
        )

    # set max & min audio length in number of samples
    max_length = int(args.max_duration_in_seconds * feature_extractor.sampling_rate)
    min_length = int(args.min_duration_in_seconds * feature_extractor.sampling_rate)

    def prepare_dataset(batch):
        sample = batch[args.audio_column_name]

        inputs = feature_extractor(
            sample["array"], sampling_rate=sample["sampling_rate"], max_length=max_length, truncation=True
        )
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(inputs.input_values[0])

        return batch

    # load via mapped files via path
    cache_file_names = None
    if args.train_cache_file_name is not None:
        cache_file_names = {"train": args.train_cache_file_name, "validation": args.validation_cache_file_name}

    # load audio files into numpy arrays
    with accelerator.main_process_first():
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            num_proc=args.preprocessing_num_workers,
            remove_columns=raw_datasets["train"].column_names,
            cache_file_names=cache_file_names,
        )

        if min_length > 0.0:
            vectorized_datasets = vectorized_datasets.filter(
                lambda x: x > min_length,
                num_proc=args.preprocessing_num_workers,
                input_columns=["input_length"],
            )

        vectorized_datasets = vectorized_datasets.remove_columns("input_length")

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if args.preprocessing_only:
        return

    # 3. Load model
    config = Wav2Vec2Config.from_pretrained(args.model_name_or_path)

    # pretraining is only supported for "newer" stable layer norm architecture
    # apply_spec_augment has to be True, mask_feature_prob has to be 0.0
    if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
        raise ValueError(
            "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
            " ``config.feat_extract_norm='layer'"
        )

    # initialize random model
    model = Wav2Vec2ForPreTraining(config)

    # Activate gradient checkpointing if needed
    if args.gradient_checkpointing:
        model.gradient_checkpointing_enable()

    # 4. Define data collator, optimizer and scheduler
    data_collator = DataCollatorForWav2Vec2Pretraining(
        model=model, feature_extractor=feature_extractor, pad_to_multiple_of=args.pad_to_multiple_of
    )
    train_dataloader = DataLoader(
        vectorized_datasets["train"],
        shuffle=True,
        collate_fn=data_collator,
        batch_size=args.per_device_train_batch_size,
    )
    eval_dataloader = DataLoader(
        vectorized_datasets["validation"], collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
    )

    # Optimizer
    optimizer = AdamW(
        list(model.parameters()),
        lr=args.learning_rate,
        betas=[args.adam_beta1, args.adam_beta2],
        eps=args.adam_epsilon,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # 5. Train
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(vectorized_datasets['train'])}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    completed_steps = 0
    starting_epoch = 0

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            # compute num of losses
            num_losses = batch["mask_time_indices"].sum()
            sub_attention_mask = batch.pop("sub_attention_mask", None)
            sub_attention_mask = (
                sub_attention_mask if sub_attention_mask is not None else torch.ones_like(batch["mask_time_indices"])
            )
            percent_masked = num_losses / sub_attention_mask.sum()

            # forward
            outputs = model(**batch)

            # divide loss by gradient accumulation steps since gradients
            # are accumulated for multiple backward passes in PyTorch
            loss = outputs.loss / args.gradient_accumulation_steps
            accelerator.backward(loss)

            # make sure that `num_losses` is summed for distributed training
            # and average gradients over losses of all devices
            if accelerator.state.num_processes > 1:
                num_losses = accelerator.gather(num_losses).sum()
                gradient_multiplier = accelerator.state.num_processes / num_losses
                multiply_grads(model.module.parameters(), gradient_multiplier)
            else:
                multiply_grads(model.parameters(), 1 / num_losses)

            # update step
            if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:

                # compute grad norm for monitoring
                scale = (
                    accelerator.scaler._scale.item()
                    if hasattr(accelerator, "scaler") and accelerator.scaler is not None
                    else 1
                )
                if accelerator.state.num_processes > 1:
                    grad_norm = get_grad_norm(model.module.parameters(), scale)
                else:
                    grad_norm = get_grad_norm(model.parameters(), scale)

                # update parameters
                optimizer.step()
                optimizer.zero_grad()

                if not accelerator.optimizer_step_was_skipped:
                    lr_scheduler.step()
                elif accelerator.is_local_main_process:
                    progress_bar.write(
                        f"Gradients have overflown - skipping update step... Updating gradient scale to {scale}..."
                    )

                # update gumbel temperature
                gumbel_temperature = max(
                    args.max_gumbel_temperature * args.gumbel_temperature_decay**completed_steps,
                    args.min_gumbel_temperature,
                )
                if hasattr(model, "module"):
                    model.module.set_gumbel_temperature(gumbel_temperature)
                else:
                    model.set_gumbel_temperature(gumbel_temperature)

                progress_bar.update(1)
                completed_steps += 1

            # 6. Log all results
            if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0:
                loss.detach()
                outputs.contrastive_loss.detach()
                outputs.diversity_loss.detach()

                if accelerator.state.num_processes > 1:
                    loss = accelerator.gather(loss).sum()
                    outputs.contrastive_loss = accelerator.gather(outputs.contrastive_loss).sum()
                    outputs.diversity_loss = accelerator.gather(outputs.diversity_loss).sum()
                    percent_masked = accelerator.gather(percent_masked).sum()

                train_logs = {
                    "loss": (loss * args.gradient_accumulation_steps) / num_losses,
                    "constrast_loss": outputs.contrastive_loss / num_losses,
                    "div_loss": outputs.diversity_loss / num_losses,
                    "%_mask_idx": percent_masked / accelerator.num_processes,
                    "ppl": outputs.codevector_perplexity,
                    "lr": torch.tensor(optimizer.param_groups[0]["lr"]),
                    "temp": torch.tensor(gumbel_temperature),
                    "grad_norm": torch.tensor(grad_norm),
                }
                log_str = ""
                for k, v in train_logs.items():
                    log_str += "| {}: {:.3e}".format(k, v.item())

                if accelerator.is_local_main_process:
                    progress_bar.write(log_str)
                    if is_wandb_available():
                        wandb.log(train_logs)

            # save model every `args.saving_steps` steps
            if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0:
                if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None:
                    accelerator.wait_for_everyone()
                    unwrapped_model = accelerator.unwrap_model(model)
                    unwrapped_model.save_pretrained(
                        args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
                    )

                if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process:
                    repo.push_to_hub(
                        commit_message=f"Training in progress step {completed_steps}",
                        blocking=False,
                        auto_lfs_prune=True,
                    )

            # if completed steps > `args.max_train_steps` stop
            if completed_steps >= args.max_train_steps:
                break

        # 7. Validate!
        model.eval()

        # init logs
        val_logs = {
            "val_loss": 0,
            "val_contrastive_loss": 0,
            "val_diversity_loss": 0,
            "val_num_losses": 0,
        }
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                batch.pop("sub_attention_mask", None)
                outputs = model(**batch)

            val_logs["val_loss"] += outputs.loss
            val_logs["val_contrastive_loss"] += outputs.contrastive_loss
            val_logs["val_diversity_loss"] += outputs.diversity_loss
            val_logs["val_num_losses"] += batch["mask_time_indices"].sum()

        # sum over devices in multi-processing
        if accelerator.num_processes > 1:
            val_logs = {k: accelerator.gather(v).sum() for k, v in val_logs.items()}

        val_logs = {k: v / val_logs["val_num_losses"] for k, v in val_logs.items()}

        log_str = ""
        for k, v in val_logs.items():
            log_str += "| {}: {:.3e}".format(k, v.item())

        if accelerator.is_local_main_process:
            progress_bar.write(log_str)
            if is_wandb_available():
                wandb.log(val_logs)

        if args.output_dir is not None:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                if args.push_to_hub:
                    repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
Ejemplo n.º 3
0
def main():
    if is_wandb_available():
        import wandb

    parser = HfArgumentParser(
        (ModelArguments, DatasetArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if is_main_process(training_args.local_rank) else logging.WARN,
    )

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name)
    else:
        datasets = load_from_disk(data_args.dataset_path)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForCausalLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name])

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=None,
        remove_columns=column_names,
        load_from_cache_file=not False,
    )

    block_size = tokenizer.model_max_length
    if block_size > 1024:
        logger.warn(
            f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
            "Picking 1024 instead. You can change that default value by passing --block_size xxx."
        )
    block_size = 1024

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: sum(examples[k], [])
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k:
            [t[i:i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=None,
        load_from_cache_file=not False,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=lm_datasets["train"] if training_args.do_train else None,
        eval_dataset=lm_datasets["validation"]
        if training_args.do_eval else None,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
    )

    # Add Callbacks
    savvi_callback = SavviCallback()
    trainer.add_callback(savvi_callback)

    # Training
    if training_args.do_train:
        model_path = (model_args.model_name_or_path if
                      (model_args.model_name_or_path is not None
                       and os.path.isdir(model_args.model_name_or_path)) else
                      None)
        trainer.train(model_path=model_path)
        trainer.save_model()  # Saves the tokenizer too for easy upload

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["eval_loss"])
        results["perplexity"] = perplexity

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results_clm.txt")
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

    savvihub.log(step=0, row={'perplexity': results["perplexity"]})

    return results