def test_pattern_matching_fallback(self):
     """
     In cases where config.json doesn't include a model_type,
     perform a few safety checks on the config mapping's order.
     """
     # no key string should be included in a later key string (typical failure case)
     keys = list(FEATURE_EXTRACTOR_MAPPING.keys())
     for i, key in enumerate(keys):
         self.assertFalse(
             any(key in later_key for later_key in keys[i + 1:]))
Ejemplo n.º 2
0
    def __new__(mcs, name, bases, dct):
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class,
                     feature_extractor_class):
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
                    if hasattr(tiny_config, "encoder_no_repeat_ngram_size"):
                        # specific for blenderbot which supports both decoder-only
                        # encoder/decoder but the test config  only reflects
                        # encoder/decoder arch
                        tiny_config.encoder_no_repeat_ngram_size = 0
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
                try:
                    model = ModelClass(tiny_config)
                except ImportError as e:
                    self.skipTest(
                        f"Cannot run with {tiny_config} as the model requires a library that isn't installed: {e}"
                    )
                if hasattr(model, "eval"):
                    model = model.eval()
                if tokenizer_class is not None:
                    try:
                        tokenizer = get_tiny_tokenizer_from_checkpoint(
                            checkpoint)
                        # XLNet actually defines it as -1.
                        if isinstance(model.config,
                                      (RobertaConfig, IBertConfig)):
                            tokenizer.model_max_length = model.config.max_position_embeddings - 2
                        elif (hasattr(model.config, "max_position_embeddings")
                              and model.config.max_position_embeddings > 0):
                            tokenizer.model_max_length = model.config.max_position_embeddings
                    # Rust Panic exception are NOT Exception subclass
                    # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                    # provide some default tokenizer and hope for the best.
                    except:  # noqa: E722
                        self.skipTest(
                            f"Ignoring {ModelClass}, cannot create a simple tokenizer"
                        )
                else:
                    tokenizer = None
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(
                    checkpoint, tiny_config)
                pipeline, examples = self.get_test_pipeline(
                    model, tokenizer, feature_extractor)
                if pipeline is None:
                    # The test can disable itself, but it should be very marginal
                    # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
                    return
                self.run_pipeline_test(pipeline, examples)

                def run_batch_test(pipeline, examples):
                    # Need to copy because `Conversation` are stateful
                    if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                        return  # No batching for this and it's OK

                    # 10 examples with batch size 4 means there needs to be a unfinished batch
                    # which is important for the unbatcher
                    dataset = [
                        copy.deepcopy(random.choice(examples))
                        for i in range(10)
                    ]

                    for item in pipeline(dataset, batch_size=4):
                        pass

                run_batch_test(pipeline, examples)

            return test

        for prefix, key in [("pt", "model_mapping"),
                            ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures, )

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(
                            model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(
                            configuration, [])
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(
                            configuration, None)
                        feature_extractor_name = (
                            feature_extractor_class.__name__ if
                            feature_extractor_class else "nofeature_extractor")
                        if not tokenizer_classes:
                            # We need to test even if there are no tokenizers.
                            tokenizer_classes = [None]
                        for tokenizer_class in tokenizer_classes:
                            if tokenizer_class is not None:
                                tokenizer_name = tokenizer_class.__name__
                            else:
                                tokenizer_name = "notokenizer"

                            test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"

                            if tokenizer_class is not None or feature_extractor_class is not None:
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )

        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

        return type.__new__(mcs, name, bases, dct)
Ejemplo n.º 3
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset.
    ds = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config_name,
        data_files=data_args.data_files,
        cache_dir=model_args.cache_dir,
    )

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in ds.keys(
    ) else data_args.train_val_split
    if isinstance(data_args.train_val_split,
                  float) and data_args.train_val_split > 0.0:
        split = ds["train"].train_test_split(data_args.train_val_split)
        ds["train"] = split["train"]
        ds["validation"] = split["test"]

    # Create config
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name_or_path:
        config = AutoConfig.from_pretrained(model_args.config_name_or_path,
                                            **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    # make sure the decoder_type is "simmim" (only relevant for BEiT)
    if hasattr(config, "decoder_type"):
        config.decoder_type = "simmim"

    # adapt config
    model_args.image_size = model_args.image_size if model_args.image_size is not None else config.image_size
    model_args.patch_size = model_args.patch_size if model_args.patch_size is not None else config.patch_size
    model_args.encoder_stride = (model_args.encoder_stride
                                 if model_args.encoder_stride is not None else
                                 config.encoder_stride)

    config.update({
        "image_size": model_args.image_size,
        "patch_size": model_args.patch_size,
        "encoder_stride": model_args.encoder_stride,
    })

    # create feature extractor
    if model_args.feature_extractor_name:
        feature_extractor = AutoFeatureExtractor.from_pretrained(
            model_args.feature_extractor_name, **config_kwargs)
    elif model_args.model_name_or_path:
        feature_extractor = AutoFeatureExtractor.from_pretrained(
            model_args.model_name_or_path, **config_kwargs)
    else:
        FEATURE_EXTRACTOR_TYPES = {
            conf.model_type: feature_extractor_class
            for conf, feature_extractor_class in
            FEATURE_EXTRACTOR_MAPPING.items()
        }
        feature_extractor = FEATURE_EXTRACTOR_TYPES[model_args.model_type]()

    # create model
    if model_args.model_name_or_path:
        model = AutoModelForMaskedImageModeling.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedImageModeling.from_config(config)

    if training_args.do_train:
        column_names = ds["train"].column_names
    else:
        column_names = ds["validation"].column_names

    if data_args.image_column_name is not None:
        image_column_name = data_args.image_column_name
    elif "image" in column_names:
        image_column_name = "image"
    elif "img" in column_names:
        image_column_name = "img"
    else:
        image_column_name = column_names[0]

    # transformations as done in original SimMIM paper
    # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
    transforms = Compose([
        Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
        RandomResizedCrop(model_args.image_size,
                          scale=(0.67, 1.0),
                          ratio=(3.0 / 4.0, 4.0 / 3.0)),
        RandomHorizontalFlip(),
        ToTensor(),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    # create mask generator
    mask_generator = MaskGenerator(
        input_size=model_args.image_size,
        mask_patch_size=data_args.mask_patch_size,
        model_patch_size=model_args.patch_size,
        mask_ratio=data_args.mask_ratio,
    )

    def preprocess_images(examples):
        """Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating
        which patches to mask."""

        examples["pixel_values"] = [
            transforms(image) for image in examples[image_column_name]
        ]
        examples["mask"] = [
            mask_generator() for i in range(len(examples[image_column_name]))
        ]

        return examples

    if training_args.do_train:
        if "train" not in ds:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(
                range(data_args.max_train_samples))
        # Set the training transforms
        ds["train"].set_transform(preprocess_images)

    if training_args.do_eval:
        if "validation" not in ds:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            ds["validation"] = (ds["validation"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        ds["validation"].set_transform(preprocess_images)

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=ds["train"] if training_args.do_train else None,
        eval_dataset=ds["validation"] if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "masked-image-modeling",
        "dataset": data_args.dataset_name,
        "tags": ["masked-image-modeling"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
    def __new__(mcs, name, bases, dct):
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class,
                     feature_extractor_class):
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
                model = ModelClass(tiny_config)
                if hasattr(model, "eval"):
                    model = model.eval()
                if tokenizer_class is not None:
                    try:
                        tokenizer = get_tiny_tokenizer_from_checkpoint(
                            checkpoint)
                        # XLNet actually defines it as -1.
                        if (hasattr(model.config, "max_position_embeddings")
                                and model.config.max_position_embeddings > 0):
                            tokenizer.model_max_length = model.config.max_position_embeddings
                    # Rust Panic exception are NOT Exception subclass
                    # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                    # provide some default tokenizer and hope for the best.
                    except:  # noqa: E722
                        self.skipTest(
                            f"Ignoring {ModelClass}, cannot create a simple tokenizer"
                        )
                else:
                    tokenizer = None
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(
                    checkpoint, tiny_config)
                self.run_pipeline_test(model, tokenizer, feature_extractor)

            return test

        for prefix, key in [("pt", "model_mapping"),
                            ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures, )

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(
                            model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(
                            configuration, [])
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(
                            configuration, None)
                        feature_extractor_name = (
                            feature_extractor_class.__name__ if
                            feature_extractor_class else "nofeature_extractor")
                        if not tokenizer_classes:
                            # We need to test even if there are no tokenizers.
                            tokenizer_classes = [None]
                        for tokenizer_class in tokenizer_classes:
                            if tokenizer_class is not None:
                                tokenizer_name = tokenizer_class.__name__
                            else:
                                tokenizer_name = "notokenizer"

                            test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"

                            if tokenizer_class is not None or feature_extractor_class is not None:
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )

        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

        return type.__new__(mcs, name, bases, dct)