Ejemplo n.º 1
0
    def test_inference_pretrained_batched(self):
        model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("asapp/sew-d-tiny-100k")

        input_speech = self._load_datasamples(2)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)

        with torch.no_grad():
            outputs = model(input_values).last_hidden_state

        # expected outputs taken from the original SEW-D implementation
        expected_outputs_first = torch.tensor(
            [
                [
                    [-0.1619, 0.6995, 0.4062, -0.1014],
                    [-0.1364, 0.5960, 0.0952, -0.0873],
                    [-0.1572, 0.5718, 0.4228, -0.0864],
                    [-0.1325, 0.6823, 0.1387, -0.0871],
                ],
                [
                    [-0.1296, 0.4008, 0.4952, -0.1450],
                    [-0.1152, 0.3693, 0.3037, -0.1290],
                    [-0.1194, 0.6074, 0.3531, -0.1466],
                    [-0.1113, 0.3135, 0.2224, -0.1338],
                ],
            ],
            device=torch_device,
        )
        expected_outputs_last = torch.tensor(
            [
                [
                    [-0.1577, 0.5108, 0.8553, 0.2550],
                    [-0.1530, 0.3580, 0.6143, 0.2672],
                    [-0.1535, 0.4954, 0.8503, 0.1387],
                    [-0.1572, 0.3363, 0.6217, 0.1490],
                ],
                [
                    [-0.1338, 0.5459, 0.9607, -0.1133],
                    [-0.1502, 0.3738, 0.7313, -0.0986],
                    [-0.0953, 0.4708, 1.0821, -0.0944],
                    [-0.1474, 0.3598, 0.7248, -0.0748],
                ],
            ],
            device=torch_device,
        )
        expected_output_sum = 54201.0469

        self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=1e-3))
        self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=1e-3))
        self.assertTrue(abs(outputs.sum() - expected_output_sum) < 1)
Ejemplo n.º 2
0
    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = SEWDModel(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
Ejemplo n.º 3
0
 def create_and_check_model(self, config, input_values, attention_mask):
     model = SEWDModel(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_values, attention_mask=attention_mask)
     self.parent.assertEqual(
         result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
     )
Ejemplo n.º 4
0
 def test_model_from_pretrained(self):
     model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k")
     self.assertIsNotNone(model)
def convert_sew_checkpoint(checkpoint_path,
                           pytorch_dump_folder_path,
                           config_path=None,
                           dict_path=None,
                           is_finetuned=True):
    """
    Copy/paste/tweak model's weights to transformers design.
    """

    if is_finetuned:
        model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
            [checkpoint_path],
            arg_overrides={"data": "/".join(dict_path.split("/")[:-1])})
    else:
        model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
            [checkpoint_path])

    if config_path is not None:
        config = SEWDConfig.from_pretrained(config_path)
    else:
        config = convert_config(model[0])
    model = model[0].eval()

    return_attention_mask = True if config.feat_extract_norm == "layer" else False
    feature_extractor = Wav2Vec2FeatureExtractor(
        feature_size=1,
        sampling_rate=16000,
        padding_value=0,
        do_normalize=True,
        return_attention_mask=return_attention_mask,
    )

    if is_finetuned:
        if dict_path:
            target_dict = Dictionary.load(dict_path)

            # important change bos & pad token id since CTC symbol is <pad> and
            # not <s> as in fairseq
            config.bos_token_id = target_dict.pad_index
            config.pad_token_id = target_dict.bos_index
            config.eos_token_id = target_dict.eos_index
            config.vocab_size = len(target_dict.symbols)
            vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
            if not os.path.isdir(pytorch_dump_folder_path):
                logger.error(
                    "--pytorch_dump_folder_path ({}) should be a directory".
                    format(pytorch_dump_folder_path))
                return
            os.makedirs(pytorch_dump_folder_path, exist_ok=True)
            with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
                json.dump(target_dict.indices, vocab_handle)
            tokenizer = Wav2Vec2CTCTokenizer(
                vocab_path,
                unk_token=target_dict.unk_word,
                pad_token=target_dict.pad_word,
                bos_token=target_dict.bos_word,
                eos_token=target_dict.eos_word,
                word_delimiter_token="|",
                do_lower_case=False,
            )
            processor = Wav2Vec2Processor(feature_extractor=feature_extractor,
                                          tokenizer=tokenizer)
            processor.save_pretrained(pytorch_dump_folder_path)

        hf_model = SEWDForCTC(config)
    else:
        hf_model = SEWDModel(config)
        feature_extractor.save_pretrained(pytorch_dump_folder_path)

    recursively_load_weights(model, hf_model, is_finetuned)

    hf_model.save_pretrained(pytorch_dump_folder_path)