def test_run_vit_mae_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
    def test_inference_for_pretraining(self):
        # make random mask reproducible across the PT and TF model
        np.random.seed(2)

        model = ViTMAEForPreTraining.from_pretrained(
            "facebook/vit-mae-base").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image,
                                   return_tensors="pt").to(torch_device)

        # prepare a noise vector that will be also used for testing the TF model
        # (this way we can ensure that the PT and TF models operate on the same inputs)
        vit_mae_config = ViTMAEConfig()
        num_patches = int(
            (vit_mae_config.image_size // vit_mae_config.patch_size)**2)
        noise = np.random.uniform(size=(1, num_patches))

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs, noise=torch.from_numpy(noise))

        # verify the logits
        expected_shape = torch.Size((1, 196, 768))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([[-0.0548, -1.7023, -0.9325],
                                       [0.3721, -0.5670, -0.2233],
                                       [0.8235, -1.3878, -0.3524]])

        self.assertTrue(
            torch.allclose(outputs.logits[0, :3, :3],
                           expected_slice.to(torch_device),
                           atol=1e-4))
Ejemplo n.º 3
0
    def test_inference_for_pretraining(self):
        # make random mask reproducible
        torch.manual_seed(2)

        model = ViTMAEForPreTraining.from_pretrained(
            "facebook/vit-mae-base").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image,
                                   return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 196, 768))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([[0.7366, -1.3663, -0.2844],
                                       [0.7919, -1.3839, -0.3241],
                                       [0.4313, -0.7168,
                                        -0.2878]]).to(torch_device)

        self.assertTrue(
            torch.allclose(outputs.logits[0, :3, :3],
                           expected_slice,
                           atol=1e-4))
Ejemplo n.º 4
0
def convert_vit_mae_checkpoint(checkpoint_url, pytorch_dump_folder_path):
    config = ViTMAEConfig()
    if "large" in checkpoint_url:
        config.hidden_size = 1024
        config.intermediate_size = 4096
        config.num_hidden_layers = 24
        config.num_attention_heads = 16
    elif "huge" in checkpoint_url:
        config.patch_size = 14
        config.hidden_size = 1280
        config.intermediate_size = 5120
        config.num_hidden_layers = 32
        config.num_attention_heads = 16

    model = ViTMAEForPreTraining(config)

    state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]

    feature_extractor = ViTMAEFeatureExtractor(size=config.image_size)

    new_state_dict = convert_state_dict(state_dict, config)

    model.load_state_dict(new_state_dict)
    model.eval()

    url = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"

    image = Image.open(requests.get(url, stream=True).raw)
    feature_extractor = ViTMAEFeatureExtractor(size=config.image_size)
    inputs = feature_extractor(images=image, return_tensors="pt")

    # forward pass
    torch.manual_seed(2)
    outputs = model(**inputs)
    logits = outputs.logits

    if "large" in checkpoint_url:
        expected_slice = torch.tensor(
            [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]]
        )
    elif "huge" in checkpoint_url:
        expected_slice = torch.tensor(
            [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]]
        )
    else:
        expected_slice = torch.tensor(
            [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]]
        )

    # verify logits
    assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4)

    print(f"Saving model to {pytorch_dump_folder_path}")
    model.save_pretrained(pytorch_dump_folder_path)

    print(f"Saving feature extractor to {pytorch_dump_folder_path}")
    feature_extractor.save_pretrained(pytorch_dump_folder_path)
Ejemplo n.º 5
0
 def create_and_check_for_pretraining(self, config, pixel_values, labels):
     model = ViTMAEForPreTraining(config)
     model.to(torch_device)
     model.eval()
     result = model(pixel_values)
     # expected sequence length = num_patches
     image_size = to_2tuple(self.image_size)
     patch_size = to_2tuple(self.patch_size)
     num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
     expected_seq_len = num_patches
     expected_num_channels = self.patch_size ** 2 * self.num_channels
     self.parent.assertEqual(result.logits.shape, (self.batch_size, expected_seq_len, expected_num_channels))
Ejemplo n.º 6
0
    def test_inference_for_pretraining(self):
        # make random mask reproducible
        # note that the same seed on CPU and on GPU doesn’t mean they spew the same random number sequences,
        # as they both have fairly different PRNGs (for efficiency reasons).
        # source: https://discuss.pytorch.org/t/random-seed-that-spans-across-devices/19735
        torch.manual_seed(2)

        model = ViTMAEForPreTraining.from_pretrained(
            "facebook/vit-mae-base").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image,
                                   return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 196, 768))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice_cpu = torch.tensor([[0.7366, -1.3663, -0.2844],
                                           [0.7919, -1.3839, -0.3241],
                                           [0.4313, -0.7168, -0.2878]])
        expected_slice_gpu = torch.tensor([[0.8948, -1.0680, 0.0030],
                                           [0.9758, -1.1181, -0.0290],
                                           [1.0602, -1.1522, -0.0528]])

        # set expected slice depending on device
        expected_slice = expected_slice_cpu if torch_device == "cpu" else expected_slice_gpu

        self.assertTrue(
            torch.allclose(outputs.logits[0, :3, :3],
                           expected_slice.to(torch_device),
                           atol=1e-4))
    def create_and_check_for_pretraining(self, config, pixel_values, labels):
        model = ViTMAEForPreTraining(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        num_patches = (self.image_size // self.patch_size)**2
        expected_num_channels = self.patch_size**2 * self.num_channels
        self.parent.assertEqual(
            result.logits.shape,
            (self.batch_size, num_patches, expected_num_channels))

        # test greyscale images
        config.num_channels = 1
        model = ViTMAEForPreTraining(config)
        model.to(torch_device)
        model.eval()
        pixel_values = floats_tensor(
            [self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        expected_num_channels = self.patch_size**2
        self.parent.assertEqual(
            result.logits.shape,
            (self.batch_size, num_patches, expected_num_channels))
Ejemplo n.º 8
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, CustomTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset.
    ds = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config_name,
        data_files=data_args.data_files,
        cache_dir=model_args.cache_dir,
    )

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in ds.keys(
    ) else data_args.train_val_split
    if isinstance(data_args.train_val_split,
                  float) and data_args.train_val_split > 0.0:
        split = ds["train"].train_test_split(data_args.train_val_split)
        ds["train"] = split["train"]
        ds["validation"] = split["test"]

    # Load pretrained model and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = ViTMAEConfig.from_pretrained(model_args.config_name,
                                              **config_kwargs)
    elif model_args.model_name_or_path:
        config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path,
                                              **config_kwargs)
    else:
        config = ViTMAEConfig()
        logger.warning(
            "You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    # adapt config
    config.update({
        "mask_ratio": model_args.mask_ratio,
        "norm_pix_loss": model_args.norm_pix_loss,
    })

    # create feature extractor
    if model_args.feature_extractor_name:
        feature_extractor = ViTFeatureExtractor.from_pretrained(
            model_args.feature_extractor_name, **config_kwargs)
    elif model_args.model_name_or_path:
        feature_extractor = ViTFeatureExtractor.from_pretrained(
            model_args.model_name_or_path, **config_kwargs)
    else:
        feature_extractor = ViTFeatureExtractor()

    # create model
    if model_args.model_name_or_path:
        model = ViTMAEForPreTraining.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = ViTMAEForPreTraining(config)

    if training_args.do_train:
        column_names = ds["train"].column_names
    else:
        column_names = ds["validation"].column_names

    if data_args.image_column_name is not None:
        image_column_name = data_args.image_column_name
    elif "image" in column_names:
        image_column_name = "image"
    elif "img" in column_names:
        image_column_name = "img"
    else:
        image_column_name = column_names[0]

    # transformations as done in original MAE paper
    # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
    transforms = Compose([
        Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
        RandomResizedCrop(feature_extractor.size,
                          scale=(0.2, 1.0),
                          interpolation=InterpolationMode.BICUBIC),
        RandomHorizontalFlip(),
        ToTensor(),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    def preprocess_images(examples):
        """Preprocess a batch of images by applying transforms."""

        examples["pixel_values"] = [
            transforms(image) for image in examples[image_column_name]
        ]
        return examples

    if training_args.do_train:
        if "train" not in ds:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(
                range(data_args.max_train_samples))
        # Set the training transforms
        ds["train"].set_transform(preprocess_images)

    if training_args.do_eval:
        if "validation" not in ds:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            ds["validation"] = (ds["validation"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        ds["validation"].set_transform(preprocess_images)

    # Compute absolute learning rate
    total_train_batch_size = (training_args.train_batch_size *
                              training_args.gradient_accumulation_steps *
                              training_args.world_size)
    if training_args.base_learning_rate is not None:
        training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=ds["train"] if training_args.do_train else None,
        eval_dataset=ds["validation"] if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "tasks": "masked-auto-encoding",
        "dataset": data_args.dataset_name,
        "tags": ["masked-auto-encoding"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Ejemplo n.º 9
0
def main():
    ds = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config,
        data_files=data_args.data_files,
        cache_dir=model_args.cache_dir,
    )

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in ds.keys(
    ) else data_args.train_val_split
    if isinstance(data_args.train_val_split,
                  float) and data_args.train_val_split > 0.0:
        split = ds["train"].train_test_split(data_args.train_val_split)
        ds["train"] = split["train"]
        ds["validation"] = split["test"]

    # Load pretrained model and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kw = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_version,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = ViTMAEConfig.from_pretrained(model_args.config_name,
                                              **config_kw)
    elif model_args.model_name:
        config = ViTMAEConfig.from_pretrained(model_args.model_name,
                                              **config_kw)
    else:
        config = ViTMAEConfig()
        logger.warning(
            "You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    # adapt config
    config.update({
        "mask_ratio": model_args.mask_ratio,
        "norm_pix_loss": model_args.norm_pix_loss,
    })

    # create feature extractor
    if model_args.feature_extractor:
        feature_extractor = ViTFeatureExtractor.from_pretrained(
            model_args.feature_extractor, **config_kw)
    elif model_args.model_name:
        feature_extractor = ViTFeatureExtractor.from_pretrained(
            model_args.model_name, **config_kw)
    else:
        feature_extractor = ViTFeatureExtractor()

    # create model
    if model_args.model_name:
        model = ViTMAEForPreTraining.from_pretrained(
            model_args.model_name,
            from_tf=bool(".ckpt" in model_args.model_name),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_version,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model")
        model = ViTMAEForPreTraining(config)

    if training_args.do_train:
        column_names = ds["train"].column_names
    else:
        column_names = ds["validation"].column_names

    if data_args.image_column_name is not None:
        image_column_name = data_args.image_column_name
    elif "image" in column_names:
        image_column_name = "image"
    elif "img" in column_names:
        image_column_name = "img"
    else:
        image_column_name = column_names[0]

    # transformations as done in original MAE paper
    # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
    transforms = Compose([
        Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
        RandomResizedCrop(feature_extractor.size,
                          scale=(0.2, 1.0),
                          interpolation=InterpolationMode.BICUBIC),
        RandomHorizontalFlip(),
        ToTensor(),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    def preprocess_images(examples):
        """Preprocess a batch of images by applying transforms."""

        examples["pixel_values"] = [
            transforms(image) for image in examples[image_column_name]
        ]
        return examples

    if training_args.do_train:
        if "train" not in ds:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            ds["train"] = (ds["train"].shuffle(seed=training_args.seed).select(
                range(data_args.max_train_samples)))
        # Set the training transforms
        ds["train"].set_transform(preprocess_images)

    if training_args.do_eval:
        if "validation" not in ds:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            ds["validation"] = (ds["validation"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        ds["validation"].set_transform(preprocess_images)

    # Compute absolute learning rate
    total_train_batch_size = (training_args.train_batch_size *
                              training_args.grad_accumulation_steps *
                              training_args.world_size)
    if training_args.base_lr is not None:
        training_args.lr = training_args.base_lr * total_train_batch_size / 256

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=ds["train"] if training_args.do_train else None,
        eval_dataset=ds["validation"] if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kw = {
        "tasks": "masked-auto-encoding",
        "dataset": data_args.dataset_name,
        "tags": ["masked-auto-encoding"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kw)
    else:
        trainer.create_model_card(**kw)