Ejemplo n.º 1
0
 def create_and_check_xglm_weight_initialization(self, config, *args):
     model = XGLMModel(config)
     model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
     for key in model.state_dict().keys():
         if "c_proj" in key and "weight" in key:
             self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
             self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)
Ejemplo n.º 2
0
    def create_and_check_xglm_model_attention_mask_past(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.zeros((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
Ejemplo n.º 3
0
    def create_and_check_xglm_model_past_large_inputs(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=1)

        # append to next input_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[
            "last_hidden_state"
        ]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
Ejemplo n.º 4
0
    def create_and_check_xglm_model(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, head_mask=head_mask)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.num_hidden_layers)
 def test_model_from_pretrained(self):
     for model_name in XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = XGLMModel.from_pretrained(model_name)
         self.assertIsNotNone(model)