Ejemplo n.º 1
0
    def forward(self, inputs, weights):
        x, lstm_state = inputs

        # LSTM state consists of c and h.
        c, h = np.split(lstm_state, 2, axis=-1)

        # Dense layer on the concatenation of x and h.
        w, b = weights
        y = np.dot(np.concatenate([x, h], axis=-1), w) + b

        # i = input_gate, j = new_input, f = forget_gate, o = output_gate
        i, j, f, o = np.split(y, 4, axis=-1)

        new_c = c * backend.sigmoid(f) + backend.sigmoid(i) * np.tanh(j)
        new_h = np.tanh(new_c) * backend.sigmoid(o)
        return new_h, np.concatenate([new_c, new_h], axis=-1)
Ejemplo n.º 2
0
    def forward(self, inputs, weights):
        x, gru_state = inputs

        # Dense layer on the concatenation of x and h.
        w1, b1, w2, b2 = weights
        y = np.dot(np.concatenate([x, gru_state], axis=-1), w1) + b1

        # Update and reset gates.
        u, r = np.split(backend.sigmoid(y), 2, axis=-1)

        # Candidate.
        c = np.dot(np.concatenate([x, r * gru_state], axis=-1), w2) + b2

        new_gru_state = u * gru_state + (1 - u) * np.tanh(c)
        return new_gru_state, new_gru_state
Ejemplo n.º 3
0
def Tanh(x, **unused_kwargs):
  return np.tanh(x)
Ejemplo n.º 4
0
def FastGelu(x, **unused_kwargs):
  return 0.5 * x * (1 + np.tanh(x * 0.7978845608 * (1 + 0.044715 * x * x)))