Ejemplo n.º 1
0
def create_sample_distance_table(engine):
    ensure_db(engine)
    init_engine(engine)
    model_groups = {
        'stable': ModelGroupFactory(model_type='myStableClassifier'),
        'spiky': ModelGroupFactory(model_type='mySpikeClassifier'),
    }

    class StableModelFactory(ModelFactory):
        model_group_rel = model_groups['stable']

    class SpikyModelFactory(ModelFactory):
        model_group_rel = model_groups['spiky']

    models = {
        'stable_3y_ago': StableModelFactory(train_end_time='2014-01-01'),
        'stable_2y_ago': StableModelFactory(train_end_time='2015-01-01'),
        'stable_1y_ago': StableModelFactory(train_end_time='2016-01-01'),
        'spiky_3y_ago': SpikyModelFactory(train_end_time='2014-01-01'),
        'spiky_2y_ago': SpikyModelFactory(train_end_time='2015-01-01'),
        'spiky_1y_ago': SpikyModelFactory(train_end_time='2016-01-01'),
    }
    session.commit()
    distance_table = DistanceFromBestTable(db_engine=engine,
                                           models_table='models',
                                           distance_table='dist_table')
    distance_table._create()
    stable_grp = model_groups['stable'].model_group_id
    spiky_grp = model_groups['spiky'].model_group_id
    stable_3y_id = models['stable_3y_ago'].model_id
    stable_3y_end = models['stable_3y_ago'].train_end_time
    stable_2y_id = models['stable_2y_ago'].model_id
    stable_2y_end = models['stable_2y_ago'].train_end_time
    stable_1y_id = models['stable_1y_ago'].model_id
    stable_1y_end = models['stable_1y_ago'].train_end_time
    spiky_3y_id = models['spiky_3y_ago'].model_id
    spiky_3y_end = models['spiky_3y_ago'].train_end_time
    spiky_2y_id = models['spiky_2y_ago'].model_id
    spiky_2y_end = models['spiky_2y_ago'].train_end_time
    spiky_1y_id = models['spiky_1y_ago'].model_id
    spiky_1y_end = models['spiky_1y_ago'].train_end_time
    distance_rows = [
        (stable_grp, stable_3y_id, stable_3y_end, 'precision@', '100_abs', 0.5,
         0.6, 0.1, 0.5, 0.15),
        (stable_grp, stable_2y_id, stable_2y_end, 'precision@', '100_abs', 0.5,
         0.84, 0.34, 0.5, 0.18),
        (stable_grp, stable_1y_id, stable_1y_end, 'precision@', '100_abs',
         0.46, 0.67, 0.21, 0.5, 0.11),
        (spiky_grp, spiky_3y_id, spiky_3y_end, 'precision@', '100_abs', 0.45,
         0.6, 0.15, 0.5, 0.19),
        (spiky_grp, spiky_2y_id, spiky_2y_end, 'precision@', '100_abs', 0.84,
         0.84, 0.0, 0.5, 0.3),
        (spiky_grp, spiky_1y_id, spiky_1y_end, 'precision@', '100_abs', 0.45,
         0.67, 0.22, 0.5, 0.12),
        (stable_grp, stable_3y_id, stable_3y_end, 'recall@', '100_abs', 0.4,
         0.4, 0.0, 0.4, 0.0),
        (stable_grp, stable_2y_id, stable_2y_end, 'recall@', '100_abs', 0.5,
         0.5, 0.0, 0.5, 0.0),
        (stable_grp, stable_1y_id, stable_1y_end, 'recall@', '100_abs', 0.6,
         0.6, 0.0, 0.6, 0.0),
        (spiky_grp, spiky_3y_id, spiky_3y_end, 'recall@', '100_abs', 0.65,
         0.65, 0.0, 0.65, 0.0),
        (spiky_grp, spiky_2y_id, spiky_2y_end, 'recall@', '100_abs', 0.55,
         0.55, 0.0, 0.55, 0.0),
        (spiky_grp, spiky_1y_id, spiky_1y_end, 'recall@', '100_abs', 0.45,
         0.45, 0.0, 0.45, 0.0),
    ]
    for dist_row in distance_rows:
        engine.execute(
            'insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)',
            dist_row)
    return distance_table, model_groups
Ejemplo n.º 2
0
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            "stable": ModelGroupFactory(model_type="myStableClassifier"),
            "bad": ModelGroupFactory(model_type="myBadClassifier"),
            "spiky": ModelGroupFactory(model_type="mySpikeClassifier"),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups["stable"]

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups["bad"]

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups["spiky"]

        models = {
            "stable_3y_ago": StableModelFactory(train_end_time="2014-01-01"),
            "stable_2y_ago": StableModelFactory(train_end_time="2015-01-01"),
            "stable_1y_ago": StableModelFactory(train_end_time="2016-01-01"),
            "bad_3y_ago": BadModelFactory(train_end_time="2014-01-01"),
            "bad_2y_ago": BadModelFactory(train_end_time="2015-01-01"),
            "bad_1y_ago": BadModelFactory(train_end_time="2016-01-01"),
            "spiky_3y_ago": SpikyModelFactory(train_end_time="2014-01-01"),
            "spiky_2y_ago": SpikyModelFactory(train_end_time="2015-01-01"),
            "spiky_1y_ago": SpikyModelFactory(train_end_time="2016-01-01"),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Recall100Factory(ImmediateEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        for (add_val, PrecFac, RecFac) in (
            (0, Precision100Factory, Recall100Factory),
            (-0.15, Precision100FactoryMonthOut, Recall100FactoryMonthOut),
        ):
            PrecFac(model_rel=models["stable_3y_ago"], value=0.6 + add_val)
            PrecFac(model_rel=models["stable_2y_ago"], value=0.57 + add_val)
            PrecFac(model_rel=models["stable_1y_ago"], value=0.59 + add_val)
            PrecFac(model_rel=models["bad_3y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["bad_2y_ago"], value=0.39 + add_val)
            PrecFac(model_rel=models["bad_1y_ago"], value=0.43 + add_val)
            PrecFac(model_rel=models["spiky_3y_ago"], value=0.8 + add_val)
            PrecFac(model_rel=models["spiky_2y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["spiky_1y_ago"], value=0.4 + add_val)
            RecFac(model_rel=models["stable_3y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["stable_2y_ago"], value=0.56 + add_val)
            RecFac(model_rel=models["stable_1y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["bad_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["bad_2y_ago"], value=0.34 + add_val)
            RecFac(model_rel=models["bad_1y_ago"], value=0.36 + add_val)
            RecFac(model_rel=models["spiky_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["spiky_2y_ago"], value=0.8 + add_val)
            RecFac(model_rel=models["spiky_1y_ago"], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table="models",
                                               distance_table="dist_table")
        metrics = [
            {
                "metric": "precision@",
                "parameter": "100_abs"
            },
            {
                "metric": "recall@",
                "parameter": "100_abs"
            },
        ]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ["2014-01-01", "2015-01-01", "2016-01-01"],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = """
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        """

        prec_3y_ago = engine.execute(query,
                                     ("precision@", "100_abs", "2014-01-01"))
        assert [row for row in prec_3y_ago] == [
            (models["spiky_3y_ago"].model_id, 0.8, 0, 0.17),
            (models["stable_3y_ago"].model_id, 0.6, 0.2, 0),
            (models["bad_3y_ago"].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ("recall@", "100_abs", "2015-01-01"))
        assert [row for row in recall_2y_ago] == [
            (models["spiky_2y_ago"].model_id, 0.8, 0, 0.19),
            (models["stable_2y_ago"].model_id, 0.56, 0.24, 0),
            (models["bad_2y_ago"].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ("precision@", "100_abs"): (0.39, 0.8),
            ("recall@", "100_abs"): (0.34, 0.8),
        }
Ejemplo n.º 3
0
 def setup_data(self, engine):
     ensure_db(engine)
     init_engine(engine)
     ModelGroupFactory(model_group_id=1, model_type='modelType1')
     ModelGroupFactory(model_group_id=2, model_type='modelType2')
     ModelGroupFactory(model_group_id=3, model_type='modelType3')
     ModelGroupFactory(model_group_id=4, model_type='modelType4')
     ModelGroupFactory(model_group_id=5, model_type='modelType5')
     session.commit()
     distance_table = DistanceFromBestTable(db_engine=engine,
                                            models_table='models',
                                            distance_table='dist_table')
     distance_table._create()
     distance_rows = [
         # 2014: model group 1 should pass both close and min checks
         (1, 1, '2014-01-01', 'precision@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (1, 1, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (1, 1, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 1 should not pass close check
         (1, 2, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (1, 2, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (1, 2, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (1, 3, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (1, 3, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (1, 3, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 2 should not pass min check
         (2, 4, '2014-01-01', 'precision@', '100_abs', 0.39, 0.5, 0.11, 0.5
          ),
         (2, 4, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (2, 4, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 2 should pass both checks
         (2, 5, '2015-01-01', 'precision@', '100_abs', 0.69, 0.88, 0.19,
          0.12),
         (2, 5, '2015-01-01', 'recall@', '100_abs', 0.69, 0.88, 0.19, 0.0),
         (2, 5, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (2, 6, '2016-01-01', 'precision@', '100_abs', 0.34, 0.46, 0.12,
          0.11),
         (2, 6, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (2, 6, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # model group 3 not included in this round
         (3, 7, '2014-01-01', 'precision@', '100_abs', 0.28, 0.5, 0.22, 0.0
          ),
         (3, 7, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (3, 7, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (3, 8, '2015-01-01', 'precision@', '100_abs', 0.88, 0.88, 0.0,
          0.02),
         (3, 8, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (3, 8, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (3, 9, '2016-01-01', 'precision@', '100_abs', 0.44, 0.46, 0.02,
          0.11),
         (3, 9, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (3, 9, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 4 should not pass any checks
         (4, 10, '2014-01-01', 'precision@', '100_abs', 0.29, 0.5, 0.21,
          0.21),
         (4, 10, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (4, 10, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 4 should not pass close check
         (4, 11, '2015-01-01', 'precision@', '100_abs', 0.67, 0.88, 0.21,
          0.21),
         (4, 11, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (4, 11, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (4, 12, '2016-01-01', 'precision@', '100_abs', 0.25, 0.46, 0.21,
          0.21),
         (4, 12, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (4, 12, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 5 should not pass because precision is good but not recall
         (5, 13, '2014-01-01', 'precision@', '100_abs', 0.5, 0.38, 0.0, 0.38
          ),
         (5, 13, '2014-01-01', 'recall@', '100_abs', 0.3, 0.5, 0.2, 0.38),
         (5, 13, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 5 should not pass because precision is good but not recall
         (5, 14, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (5, 14, '2015-01-01', 'recall@', '100_abs', 0.3, 0.88, 0.58, 0.0),
         (5, 14, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (5, 15, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (5, 15, '2016-01-01', 'recall@', '100_abs', 0.3, 0.46, 0.16, 0.11),
         (5, 15, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 6 is failed by false positives
         (6, 16, '2014-01-01', 'precision@', '100_abs', 0.5, 0.5, 0.0, 0.38
          ),
         (6, 16, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (6, 16, '2014-01-01', 'false positives@', '100_abs', 60, 30, 30,
          10),
         # 2015: model group 6 is failed by false positives
         (6, 17, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (6, 17, '2015-01-01', 'recall@', '100_abs', 0.5, 0.38, 0.0, 0.38),
         (6, 17, '2015-01-01', 'false positives@', '100_abs', 60, 30, 30,
          10),
         (6, 18, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (6, 18, '2016-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (6, 18, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
     ]
     for dist_row in distance_rows:
         engine.execute(
             'insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s, %s)',
             dist_row)
     thresholder = ModelGroupThresholder(
         distance_from_best_table=distance_table,
         train_end_times=['2014-01-01', '2015-01-01'],
         initial_model_group_ids=[1, 2, 4, 5, 6],
         initial_metric_filters=self.metric_filters)
     return thresholder
Ejemplo n.º 4
0
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            'stable': ModelGroupFactory(model_type='myStableClassifier'),
            'bad': ModelGroupFactory(model_type='myBadClassifier'),
            'spiky': ModelGroupFactory(model_type='mySpikeClassifier'),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups['stable']

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups['bad']

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups['spiky']

        models = {
            'stable_3y_ago': StableModelFactory(train_end_time='2014-01-01'),
            'stable_2y_ago': StableModelFactory(train_end_time='2015-01-01'),
            'stable_1y_ago': StableModelFactory(train_end_time='2016-01-01'),
            'bad_3y_ago': BadModelFactory(train_end_time='2014-01-01'),
            'bad_2y_ago': BadModelFactory(train_end_time='2015-01-01'),
            'bad_1y_ago': BadModelFactory(train_end_time='2016-01-01'),
            'spiky_3y_ago': SpikyModelFactory(train_end_time='2014-01-01'),
            'spiky_2y_ago': SpikyModelFactory(train_end_time='2015-01-01'),
            'spiky_1y_ago': SpikyModelFactory(train_end_time='2016-01-01'),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Recall100Factory(ImmediateEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        for (add_val, PrecFac, RecFac) in ((0, Precision100Factory,
                                            Recall100Factory),
                                           (-0.15, Precision100FactoryMonthOut,
                                            Recall100FactoryMonthOut)):
            PrecFac(model_rel=models['stable_3y_ago'], value=0.6 + add_val)
            PrecFac(model_rel=models['stable_2y_ago'], value=0.57 + add_val)
            PrecFac(model_rel=models['stable_1y_ago'], value=0.59 + add_val)
            PrecFac(model_rel=models['bad_3y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['bad_2y_ago'], value=0.39 + add_val)
            PrecFac(model_rel=models['bad_1y_ago'], value=0.43 + add_val)
            PrecFac(model_rel=models['spiky_3y_ago'], value=0.8 + add_val)
            PrecFac(model_rel=models['spiky_2y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['spiky_1y_ago'], value=0.4 + add_val)
            RecFac(model_rel=models['stable_3y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['stable_2y_ago'], value=0.56 + add_val)
            RecFac(model_rel=models['stable_1y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['bad_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['bad_2y_ago'], value=0.34 + add_val)
            RecFac(model_rel=models['bad_1y_ago'], value=0.36 + add_val)
            RecFac(model_rel=models['spiky_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['spiky_2y_ago'], value=0.8 + add_val)
            RecFac(model_rel=models['spiky_1y_ago'], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table='models',
                                               distance_table='dist_table')
        metrics = [{
            'metric': 'precision@',
            'parameter': '100_abs'
        }, {
            'metric': 'recall@',
            'parameter': '100_abs'
        }]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ['2014-01-01', '2015-01-01', '2016-01-01'],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = '''
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        '''

        prec_3y_ago = engine.execute(query,
                                     ('precision@', '100_abs', '2014-01-01'))
        assert [row for row in prec_3y_ago] == [
            (models['spiky_3y_ago'].model_id, 0.8, 0, 0.17),
            (models['stable_3y_ago'].model_id, 0.6, 0.2, 0),
            (models['bad_3y_ago'].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ('recall@', '100_abs', '2015-01-01'))
        assert [row for row in recall_2y_ago] == [
            (models['spiky_2y_ago'].model_id, 0.8, 0, 0.19),
            (models['stable_2y_ago'].model_id, 0.56, 0.24, 0),
            (models['bad_2y_ago'].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ('precision@', '100_abs'): (0.39, 0.8),
            ('recall@', '100_abs'): (0.34, 0.8),
        }
Ejemplo n.º 5
0
 def setup_data(self, engine):
     ensure_db(engine)
     init_engine(engine)
     ModelGroupFactory(model_group_id=1, model_type="modelType1")
     ModelGroupFactory(model_group_id=2, model_type="modelType2")
     ModelGroupFactory(model_group_id=3, model_type="modelType3")
     ModelGroupFactory(model_group_id=4, model_type="modelType4")
     ModelGroupFactory(model_group_id=5, model_type="modelType5")
     session.commit()
     distance_table = DistanceFromBestTable(db_engine=engine,
                                            models_table="models",
                                            distance_table="dist_table",
                                            agg_type="worst")
     distance_table._create()
     distance_rows = [
         # 2014: model group 1 should pass both close and min checks
         (1, "2014-01-01", "precision@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (1, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (1, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 1 should not pass close check
         (1, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (1, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (1, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (1, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (1, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (1, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 2 should not pass min check
         (2, "2014-01-01", "precision@", "100_abs", 0.39, 0.5, 0.11, 0.5),
         (2, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (2, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 2 should pass both checks
         (2, "2015-01-01", "precision@", "100_abs", 0.69, 0.88, 0.19, 0.12),
         (2, "2015-01-01", "recall@", "100_abs", 0.69, 0.88, 0.19, 0.0),
         (2, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (2, "2016-01-01", "precision@", "100_abs", 0.34, 0.46, 0.12, 0.11),
         (2, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (2, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # model group 3 not included in this round
         (3, "2014-01-01", "precision@", "100_abs", 0.28, 0.5, 0.22, 0.0),
         (3, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (3, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (3, "2015-01-01", "precision@", "100_abs", 0.88, 0.88, 0.0, 0.02),
         (3, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (3, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (3, "2016-01-01", "precision@", "100_abs", 0.44, 0.46, 0.02, 0.11),
         (3, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (3, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 4 should not pass any checks
         (4, "2014-01-01", "precision@", "100_abs", 0.29, 0.5, 0.21, 0.21),
         (4, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (4, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 4 should not pass close check
         (4, "2015-01-01", "precision@", "100_abs", 0.67, 0.88, 0.21, 0.21),
         (4, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (4, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (4, "2016-01-01", "precision@", "100_abs", 0.25, 0.46, 0.21, 0.21),
         (4, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (4, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 5 should not pass because precision is good but not recall
         (5, "2014-01-01", "precision@", "100_abs", 0.5, 0.38, 0.0, 0.38),
         (5, "2014-01-01", "recall@", "100_abs", 0.3, 0.5, 0.2, 0.38),
         (5, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 5 should not pass because precision is good but not recall
         (5, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (5, "2015-01-01", "recall@", "100_abs", 0.3, 0.88, 0.58, 0.0),
         (5, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (5, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (5, "2016-01-01", "recall@", "100_abs", 0.3, 0.46, 0.16, 0.11),
         (5, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 6 is failed by false positives
         (6, "2014-01-01", "precision@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2014-01-01", "false positives@", "100_abs", 60, 30, 30, 10),
         # 2015: model group 6 is failed by false positives
         (6, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (6, "2015-01-01", "recall@", "100_abs", 0.5, 0.38, 0.0, 0.38),
         (6, "2015-01-01", "false positives@", "100_abs", 60, 30, 30, 10),
         (6, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (6, "2016-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
     ]
     for dist_row in distance_rows:
         engine.execute(
             "insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s)",
             dist_row,
         )
     thresholder = ModelGroupThresholder(
         distance_from_best_table=distance_table,
         train_end_times=["2014-01-01", "2015-01-01"],
         initial_model_group_ids=[1, 2, 4, 5, 6],
         initial_metric_filters=self.metric_filters,
     )
     return thresholder
Ejemplo n.º 6
0
def create_sample_distance_table(engine):
    ensure_db(engine)
    init_engine(engine)
    model_groups = {
        "stable": ModelGroupFactory(model_type="myStableClassifier"),
        "spiky": ModelGroupFactory(model_type="mySpikeClassifier"),
    }

    class StableModelFactory(ModelFactory):
        model_group_rel = model_groups["stable"]

    class SpikyModelFactory(ModelFactory):
        model_group_rel = model_groups["spiky"]

    models = {
        "stable_3y_ago": StableModelFactory(train_end_time="2014-01-01"),
        "stable_2y_ago": StableModelFactory(train_end_time="2015-01-01"),
        "stable_1y_ago": StableModelFactory(train_end_time="2016-01-01"),
        "spiky_3y_ago": SpikyModelFactory(train_end_time="2014-01-01"),
        "spiky_2y_ago": SpikyModelFactory(train_end_time="2015-01-01"),
        "spiky_1y_ago": SpikyModelFactory(train_end_time="2016-01-01"),
    }
    session.commit()
    distance_table = DistanceFromBestTable(db_engine=engine,
                                           models_table="models",
                                           distance_table="dist_table")
    distance_table._create()
    stable_grp = model_groups["stable"].model_group_id
    spiky_grp = model_groups["spiky"].model_group_id
    stable_3y_id = models["stable_3y_ago"].model_id
    stable_3y_end = models["stable_3y_ago"].train_end_time
    stable_2y_id = models["stable_2y_ago"].model_id
    stable_2y_end = models["stable_2y_ago"].train_end_time
    stable_1y_id = models["stable_1y_ago"].model_id
    stable_1y_end = models["stable_1y_ago"].train_end_time
    spiky_3y_id = models["spiky_3y_ago"].model_id
    spiky_3y_end = models["spiky_3y_ago"].train_end_time
    spiky_2y_id = models["spiky_2y_ago"].model_id
    spiky_2y_end = models["spiky_2y_ago"].train_end_time
    spiky_1y_id = models["spiky_1y_ago"].model_id
    spiky_1y_end = models["spiky_1y_ago"].train_end_time
    distance_rows = [
        (
            stable_grp,
            stable_3y_id,
            stable_3y_end,
            "precision@",
            "100_abs",
            0.5,
            0.6,
            0.1,
            0.5,
            0.15,
        ),
        (
            stable_grp,
            stable_2y_id,
            stable_2y_end,
            "precision@",
            "100_abs",
            0.5,
            0.84,
            0.34,
            0.5,
            0.18,
        ),
        (
            stable_grp,
            stable_1y_id,
            stable_1y_end,
            "precision@",
            "100_abs",
            0.46,
            0.67,
            0.21,
            0.5,
            0.11,
        ),
        (
            spiky_grp,
            spiky_3y_id,
            spiky_3y_end,
            "precision@",
            "100_abs",
            0.45,
            0.6,
            0.15,
            0.5,
            0.19,
        ),
        (
            spiky_grp,
            spiky_2y_id,
            spiky_2y_end,
            "precision@",
            "100_abs",
            0.84,
            0.84,
            0.0,
            0.5,
            0.3,
        ),
        (
            spiky_grp,
            spiky_1y_id,
            spiky_1y_end,
            "precision@",
            "100_abs",
            0.45,
            0.67,
            0.22,
            0.5,
            0.12,
        ),
        (
            stable_grp,
            stable_3y_id,
            stable_3y_end,
            "recall@",
            "100_abs",
            0.4,
            0.4,
            0.0,
            0.4,
            0.0,
        ),
        (
            stable_grp,
            stable_2y_id,
            stable_2y_end,
            "recall@",
            "100_abs",
            0.5,
            0.5,
            0.0,
            0.5,
            0.0,
        ),
        (
            stable_grp,
            stable_1y_id,
            stable_1y_end,
            "recall@",
            "100_abs",
            0.6,
            0.6,
            0.0,
            0.6,
            0.0,
        ),
        (
            spiky_grp,
            spiky_3y_id,
            spiky_3y_end,
            "recall@",
            "100_abs",
            0.65,
            0.65,
            0.0,
            0.65,
            0.0,
        ),
        (
            spiky_grp,
            spiky_2y_id,
            spiky_2y_end,
            "recall@",
            "100_abs",
            0.55,
            0.55,
            0.0,
            0.55,
            0.0,
        ),
        (
            spiky_grp,
            spiky_1y_id,
            spiky_1y_end,
            "recall@",
            "100_abs",
            0.45,
            0.45,
            0.0,
            0.45,
            0.0,
        ),
    ]
    for dist_row in distance_rows:
        engine.execute(
            "insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)",
            dist_row,
        )
    return distance_table, model_groups