def infer_zero(tester, pf, batch_size, tensor_dtype, input_shapes, output_shapes,
               model_version=None, use_http=True, use_grpc=True,
               use_http_json_tensors=True, use_streaming=True, shm_region_name_prefix=None,
               use_system_shared_memory=False, use_cuda_shared_memory=False,
               priority=0, timeout_us=0):
    tester.assertTrue(
        use_http or use_grpc or use_http_json_tensors or use_streaming)
    configs = []
    if use_http:
        configs.append(("localhost:8000", "http", False, True))
    if use_http_json_tensors and (tensor_dtype != np.float16):
        configs.append(("localhost:8000", "http", False, False))
    if use_grpc:
        configs.append(("localhost:8001", "grpc", False, False))
    if use_streaming:
        configs.append(("localhost:8001", "grpc", True, False))
    tester.assertEqual(len(input_shapes), len(output_shapes))
    io_cnt = len(input_shapes)

    if shm_region_name_prefix is None:
        shm_region_name_prefix = ["input", "output"]

    input_dict = {}
    expected_dict = {}
    shm_ip_handles = list()
    shm_op_handles = list()

    for io_num in range(io_cnt):
        if pf == "libtorch" or pf == "libtorch_nobatch":
            input_name = "INPUT__{}".format(io_num)
            output_name = "OUTPUT__{}".format(io_num)
        else:
            input_name = "INPUT{}".format(io_num)
            output_name = "OUTPUT{}".format(io_num)

        input_shape = input_shapes[io_num]
        output_shape = output_shapes[io_num]

        rtensor_dtype = _range_repr_dtype(tensor_dtype)
        if (rtensor_dtype != np.bool):
            input_array = np.random.randint(low=np.iinfo(rtensor_dtype).min,
                                            high=np.iinfo(rtensor_dtype).max,
                                            size=input_shape, dtype=rtensor_dtype)
        else:
            input_array = np.random.choice(a=[False, True], size=input_shape)
        if tensor_dtype != np.object:
            input_array = input_array.astype(tensor_dtype)
            expected_array = np.ndarray.copy(input_array)
        else:
            expected_array = np.array([unicode(str(x), encoding='utf-8')
                                       for x in input_array.flatten()], dtype=object)
            input_array = np.array([str(x) for x in input_array.flatten()],
                                   dtype=object).reshape(input_array.shape)

        expected_array = expected_array.reshape(output_shape)
        expected_dict[output_name] = expected_array

        output_byte_size = expected_array.nbytes

        if batch_size == 1:
            input_list = [input_array]
        else:
            input_list = [x for x in input_array]

        # Serialization of string tensors in the case of shared memory must be done manually
        if tensor_dtype == np.object:
            input_list_tmp = serialize_byte_tensor_list(input_list)
        else:
            input_list_tmp = input_list

        input_byte_size = sum([ip.nbytes for ip in input_list_tmp])

        # create and register shared memory region for inputs and outputs
        shm_io_handles = su.create_set_either_shm_region([shm_region_name_prefix[0]+str(io_num),
                                                        shm_region_name_prefix[1]+str(io_num)],
                                                        input_list_tmp, input_byte_size, output_byte_size,
                                                        use_system_shared_memory, use_cuda_shared_memory)

        if len(shm_io_handles) != 0:
            shm_ip_handles.append(shm_io_handles[0])
            shm_op_handles.append(shm_io_handles[1])
        input_dict[input_name] = input_array

    if model_version is not None:
        model_version = str(model_version)
    else:
        model_version = ""

    # Run inference and check results for each config
    for config in configs:
        model_name = tu.get_zero_model_name(pf, io_cnt, tensor_dtype)

        if config[1] == "http":
            triton_client = httpclient.InferenceServerClient(
                config[0], verbose=True)
        else:
            triton_client = grpcclient.InferenceServerClient(
                config[0], verbose=True)

        inputs = []
        output_req = []
        for io_num, (input_name, output_name) in enumerate(zip(input_dict.keys(), expected_dict.keys())):
            input_data = input_dict[input_name]
            input_byte_size = input_data.nbytes
            output_byte_size = expected_dict[output_name].nbytes
            if config[1] == "http":
                inputs.append(httpclient.InferInput(
                    input_name, input_data.shape, np_to_triton_dtype(tensor_dtype)))
                output_req.append(httpclient.InferRequestedOutput(
                    output_name, binary_data=config[3]))
            else:
                inputs.append(grpcclient.InferInput(
                    input_name, input_data.shape, np_to_triton_dtype(tensor_dtype)))
                output_req.append(
                    grpcclient.InferRequestedOutput(output_name))

            if not (use_cuda_shared_memory or use_system_shared_memory):
                if config[1] == "http":
                    inputs[-1].set_data_from_numpy(input_data, binary_data=config[3])
                else:
                    inputs[-1].set_data_from_numpy(input_data)
            else:
                # Register necessary shared memory regions/handles
                su.register_add_either_shm_regions(inputs, output_req, shm_region_name_prefix,
                    (shm_ip_handles, shm_op_handles), io_num, input_byte_size, output_byte_size,
                    use_system_shared_memory, use_cuda_shared_memory, triton_client)

        if config[2]:
            user_data = UserData()
            triton_client.start_stream(partial(completion_callback, user_data))
            try:
                results = triton_client.async_stream_infer(model_name,
                                          inputs,
                                          model_version=model_version,
                                          outputs=output_req,
                                          request_id=str(_unique_request_id()),
                                          priority=priority, timeout=timeout_us)
            except Exception as e:
                triton_client.stop_stream()
                raise e
            triton_client.stop_stream()
            (results, error) = user_data._completed_requests.get()
            if error is not None:
                raise error
        else:
            results = triton_client.infer(model_name,
                                          inputs,
                                          model_version=model_version,
                                          outputs=output_req,
                                          request_id=str(_unique_request_id()),
                                          priority=priority, timeout=timeout_us)

        last_response = results.get_response()

        if config[1] == "http":
            response_model_name = last_response["model_name"]
            if model_version != "":
                response_model_version = last_response["model_version"]
            response_outputs = last_response["outputs"]
        else:
            response_model_name = last_response.model_name
            if model_version != "":
                response_model_version = last_response.model_version
            response_outputs = last_response.outputs

        tester.assertEqual(response_model_name, model_name)

        if model_version != "":
            tester.assertEqual(response_model_version, model_version)

        tester.assertEqual(len(response_outputs), io_cnt)

        for result in response_outputs:
            if config[1] == "http":
                result_name = result["name"]
            else:
                result_name = result.name

            tester.assertTrue(result_name in expected_dict)
            if use_system_shared_memory or use_cuda_shared_memory:
                if pf == "libtorch" or pf == "libtorch_nobatch":
                    io_num = int(result_name.split("OUTPUT__")[1])
                else:
                    io_num = int(result_name.split("OUTPUT")[1])
                shm_handle = shm_op_handles[io_num]

                output = results.get_output(result_name)
                if config[1] == "http":
                    output_datatype = output['datatype']
                    output_shape = output['shape']
                else:
                    output_datatype = output.datatype
                    output_shape = output.shape
                output_dtype = triton_to_np_dtype(output_datatype)
            if use_system_shared_memory:
                output_data = shm.get_contents_as_numpy(
                    shm_handle, output_dtype, output_shape)
            elif use_cuda_shared_memory:
                output_data = cudashm.get_contents_as_numpy(
                    shm_handle, output_dtype, output_shape)
            else:
                output_data = results.as_numpy(result_name)

            if (output_data.dtype == np.object) and (config[3] == False):
                output_data = output_data.astype(np.bytes_)

            expected = expected_dict[result_name]
            tester.assertEqual(output_data.shape, expected.shape)
            tester.assertTrue(np.array_equal(output_data, expected),
                                "{}, {}, expected: {}, got {}".format(
                                    model_name, result_name, expected, output_data))

    if len(shm_ip_handles) != 0:
        for io_num in range(io_cnt):
            if use_cuda_shared_memory:
                triton_client.unregister_cuda_shared_memory(
                    shm_region_name_prefix[0]+str(io_num)+'_data')
                triton_client.unregister_cuda_shared_memory(
                    shm_region_name_prefix[0]+str(io_num)+'_data')
                cudashm.destroy_shared_memory_region(shm_ip_handles[io_num])
                cudashm.destroy_shared_memory_region(shm_op_handles[io_num])
            else:
                triton_client.unregister_system_shared_memory(
                    shm_region_name_prefix[1]+str(io_num)+'_data')
                triton_client.unregister_system_shared_memory(
                    shm_region_name_prefix[1]+str(io_num)+'_data')
                shm.destroy_shared_memory_region(shm_ip_handles[io_num])
                shm.destroy_shared_memory_region(shm_op_handles[io_num])

    return results
def infer_exact(tester, pf, tensor_shape, batch_size,
                input_dtype, output0_dtype, output1_dtype,
                output0_raw=True, output1_raw=True,
                model_version=None, swap=False,
                outputs=("OUTPUT0", "OUTPUT1"), use_http=True, use_grpc=True,
                use_http_json_tensors=True, skip_request_id_check=False, use_streaming=True,
                correlation_id=0, shm_region_names=None, precreated_shm_regions=None,
                use_system_shared_memory=False, use_cuda_shared_memory=False,
                priority=0, timeout_us=0):
    tester.assertTrue(
        use_http or use_http_json_tensors or use_grpc or use_streaming)
    configs = []
    if use_http:
            configs.append(("localhost:8000", "http", False, True))
    if output0_raw == output1_raw:
        # Float16 not supported for Input and Output via JSON
        if use_http_json_tensors and (input_dtype != np.float16) and \
            (output0_dtype != np.float16) and (output1_dtype != np.float16):
            configs.append(("localhost:8000", "http", False, False))
    if use_grpc:
        configs.append(("localhost:8001", "grpc", False, False))
    if use_streaming:
        configs.append(("localhost:8001", "grpc", True, False))

    # outputs are sum and difference of inputs so set max input
    # values so that they will not overflow the output. This
    # allows us to do an exact match. For float types use 8, 16,
    # 32 int range for fp 16, 32, 64 respectively. When getting
    # class outputs the result value/probability is returned as a
    # float so must use fp32 range in that case.
    rinput_dtype = _range_repr_dtype(input_dtype)
    routput0_dtype = _range_repr_dtype(
        output0_dtype if output0_raw else np.float32)
    routput1_dtype = _range_repr_dtype(
        output1_dtype if output1_raw else np.float32)
    val_min = max(np.iinfo(rinput_dtype).min,
                  np.iinfo(routput0_dtype).min,
                  np.iinfo(routput1_dtype).min) / 2
    val_max = min(np.iinfo(rinput_dtype).max,
                  np.iinfo(routput0_dtype).max,
                  np.iinfo(routput1_dtype).max) / 2

    num_classes = 3

    input0_array = np.random.randint(low=val_min, high=val_max,
                                     size=tensor_shape, dtype=rinput_dtype)
    input1_array = np.random.randint(low=val_min, high=val_max,
                                     size=tensor_shape, dtype=rinput_dtype)
    if input_dtype != np.object:
        input0_array = input0_array.astype(input_dtype)
        input1_array = input1_array.astype(input_dtype)

    if not swap:
        output0_array = input0_array + input1_array
        output1_array = input0_array - input1_array
    else:
        output0_array = input0_array - input1_array
        output1_array = input0_array + input1_array

    if output0_dtype == np.object:
        output0_array = np.array([unicode(str(x), encoding='utf-8')
                                  for x in (output0_array.flatten())], dtype=object).reshape(output0_array.shape)
    else:
        output0_array = output0_array.astype(output0_dtype)
    if output1_dtype == np.object:
        output1_array = np.array([unicode(str(x), encoding='utf-8')
                                  for x in (output1_array.flatten())], dtype=object).reshape(output1_array.shape)
    else:
        output1_array = output1_array.astype(output1_dtype)

    if input_dtype == np.object:
        in0n = np.array([str(x)
                         for x in input0_array.reshape(input0_array.size)], dtype=object)
        input0_array = in0n.reshape(input0_array.shape)
        in1n = np.array([str(x)
                         for x in input1_array.reshape(input1_array.size)], dtype=object)
        input1_array = in1n.reshape(input1_array.shape)

    # prepend size of string to output string data
    if output0_dtype == np.object:
        if batch_size == 1:
            output0_array_tmp = serialize_byte_tensor_list([output0_array])
        else:
            output0_array_tmp = serialize_byte_tensor_list(output0_array)
    else:
        output0_array_tmp = output0_array

    if output1_dtype == np.object:
        if batch_size == 1:
            output1_array_tmp = serialize_byte_tensor_list([output1_array])
        else:
            output1_array_tmp = serialize_byte_tensor_list(output1_array)
    else:
        output1_array_tmp = output1_array

    OUTPUT0 = "OUTPUT0"
    OUTPUT1 = "OUTPUT1"
    INPUT0 = "INPUT0"
    INPUT1 = "INPUT1"
    if pf == "libtorch" or pf == "libtorch_nobatch":
        OUTPUT0 = "OUTPUT__0"
        OUTPUT1 = "OUTPUT__1"
        INPUT0 = "INPUT__0"
        INPUT1 = "INPUT__1"

    output0_byte_size = sum([o0.nbytes for o0 in output0_array_tmp])
    output1_byte_size = sum([o1.nbytes for o1 in output1_array_tmp])

    if batch_size == 1:
        input0_list = [input0_array]
        input1_list = [input1_array]
    else:
        input0_list = [x for x in input0_array]
        input1_list = [x for x in input1_array]

    # Serialization of string tensors in the case of shared memory must be done manually
    if input_dtype == np.object:
        input0_list_tmp = serialize_byte_tensor_list(input0_list)
        input1_list_tmp = serialize_byte_tensor_list(input1_list)
    else:
        input0_list_tmp = input0_list
        input1_list_tmp = input1_list

    input0_byte_size = sum([i0.nbytes for i0 in input0_list_tmp])
    input1_byte_size = sum([i1.nbytes for i1 in input1_list_tmp])

    # Create system/cuda shared memory regions if needed
    shm_regions, shm_handles = su.create_set_shm_regions(input0_list_tmp, input1_list_tmp, output0_byte_size,
                                                        output1_byte_size, outputs, shm_region_names, precreated_shm_regions,
                                                        use_system_shared_memory, use_cuda_shared_memory)

    if model_version is not None:
        model_version = str(model_version)
    else:
        model_version = ""

    # Run inference and check results for each config
    for config in configs:
        model_name = tu.get_model_name(
            pf, input_dtype, output0_dtype, output1_dtype)

        if config[1] == "http":
            triton_client = httpclient.InferenceServerClient(
                config[0], verbose=True)
        else:
            triton_client = grpcclient.InferenceServerClient(
                config[0], verbose=True)

        inputs = []
        if config[1] == "http":
            inputs.append(httpclient.InferInput(
                INPUT0, tensor_shape, np_to_triton_dtype(input_dtype)))
            inputs.append(httpclient.InferInput(
                INPUT1, tensor_shape, np_to_triton_dtype(input_dtype)))
        else:
            inputs.append(grpcclient.InferInput(
                INPUT0, tensor_shape, np_to_triton_dtype(input_dtype)))
            inputs.append(grpcclient.InferInput(
                INPUT1, tensor_shape, np_to_triton_dtype(input_dtype)))

        if not (use_cuda_shared_memory or use_system_shared_memory):
            if config[1] == "http":
                inputs[0].set_data_from_numpy(
                    input0_array, binary_data=config[3])
                inputs[1].set_data_from_numpy(
                    input1_array, binary_data=config[3])
            else:
                inputs[0].set_data_from_numpy(input0_array)
                inputs[1].set_data_from_numpy(input1_array)
        else:
            # Register necessary shared memory regions/handles
            su.register_add_shm_regions(inputs, outputs, shm_regions, precreated_shm_regions, shm_handles,
                                input0_byte_size, input1_byte_size, output0_byte_size, output1_byte_size,
                                use_system_shared_memory, use_cuda_shared_memory, triton_client)

        if batch_size == 1:
            expected0_sort_idx = [np.flip(np.argsort(x.flatten()), 0)
                                  for x in output0_array.reshape((1,) + tensor_shape)]
            expected1_sort_idx = [np.flip(np.argsort(x.flatten()), 0)
                                  for x in output1_array.reshape((1,) + tensor_shape)]
        else:
            expected0_sort_idx = [np.flip(np.argsort(x.flatten()), 0)
                                  for x in output0_array.reshape(tensor_shape)]
            expected1_sort_idx = [np.flip(np.argsort(x.flatten()), 0)
                                  for x in output1_array.reshape(tensor_shape)]

        # Force binary_data = False for shared memory and class
        output_req = []
        i = 0
        if "OUTPUT0" in outputs:
            if len(shm_regions) != 0:
                if config[1] == "http":
                    output_req.append(httpclient.InferRequestedOutput(
                        OUTPUT0, binary_data=config[3]))
                else:
                    output_req.append(grpcclient.InferRequestedOutput(OUTPUT0))

                output_req[-1].set_shared_memory(
                    shm_regions[2]+'_data', output0_byte_size)
            else:
                if output0_raw:
                    if config[1] == "http":
                        output_req.append(httpclient.InferRequestedOutput(
                            OUTPUT0, binary_data=config[3]))
                    else:
                        output_req.append(
                            grpcclient.InferRequestedOutput(OUTPUT0))
                else:
                    if config[1] == "http":
                        output_req.append(httpclient.InferRequestedOutput(
                            OUTPUT0, binary_data=config[3], class_count=num_classes))
                    else:
                        output_req.append(grpcclient.InferRequestedOutput(
                            OUTPUT0, class_count=num_classes))
            i += 1
        if "OUTPUT1" in outputs:
            if len(shm_regions) != 0:
                if config[1] == "http":
                    output_req.append(httpclient.InferRequestedOutput(
                        OUTPUT1, binary_data=config[3]))
                else:
                    output_req.append(grpcclient.InferRequestedOutput(OUTPUT1))

                output_req[-1].set_shared_memory(
                    shm_regions[2+i]+'_data', output1_byte_size)
            else:
                if output1_raw:
                    if config[1] == "http":
                        output_req.append(httpclient.InferRequestedOutput(
                            OUTPUT1, binary_data=config[3]))
                    else:
                        output_req.append(
                            grpcclient.InferRequestedOutput(OUTPUT1))
                else:
                    if config[1] == "http":
                        output_req.append(httpclient.InferRequestedOutput(
                            OUTPUT1, binary_data=config[3], class_count=num_classes))
                    else:
                        output_req.append(grpcclient.InferRequestedOutput(
                            OUTPUT1, class_count=num_classes))

        if config[2]:
            user_data = UserData()
            triton_client.start_stream(partial(completion_callback, user_data))
            try:
                results = triton_client.async_stream_infer(model_name,
                                          inputs,
                                          model_version=model_version,
                                          outputs=output_req,
                                          request_id=str(_unique_request_id()))
            except Exception as e:
                triton_client.stop_stream()
                raise e
            triton_client.stop_stream()
            (results, error) = user_data._completed_requests.get()
            if error is not None:
                raise error
        else:
            results = triton_client.infer(model_name,
                                          inputs,
                                          model_version=model_version,
                                          outputs=output_req,
                                          request_id=str(_unique_request_id()))

        last_response = results.get_response()

        if not skip_request_id_check:
            global _seen_request_ids
            if config[1] == "http":
                request_id = int(last_response["id"])
            else:
                request_id = int(last_response.id)
            tester.assertFalse(request_id in _seen_request_ids,
                               "request_id: {}".format(request_id))
            _seen_request_ids.add(request_id)

        if config[1] == "http":
            response_model_name = last_response["model_name"]
            if model_version != "":
                response_model_version = last_response["model_version"]
            response_outputs = last_response["outputs"]
        else:
            response_model_name = last_response.model_name
            if model_version != "":
                response_model_version = last_response.model_version
            response_outputs = last_response.outputs

        tester.assertEqual(response_model_name, model_name)

        if model_version != "":
            tester.assertEqual(str(response_model_version), model_version)

        tester.assertEqual(len(response_outputs), len(outputs))

        for result in response_outputs:
            if config[1] == "http":
                result_name = result["name"]
            else:
                result_name = result.name

            if ((result_name == OUTPUT0 and output0_raw) or
                    (result_name == OUTPUT1 and output1_raw)):
                if use_system_shared_memory or use_cuda_shared_memory:
                    if result_name == OUTPUT0:
                        shm_handle = shm_handles[2]
                    else:
                        shm_handle = shm_handles[3]

                    output = results.get_output(result_name)
                    if config[1] == "http":
                        output_datatype = output['datatype']
                        output_shape = output['shape']
                    else:
                        output_datatype = output.datatype
                        output_shape = output.shape
                    output_dtype = triton_to_np_dtype(output_datatype)
                if use_system_shared_memory:
                    output_data = shm.get_contents_as_numpy(
                        shm_handle, output_dtype, output_shape)
                elif use_cuda_shared_memory:
                    output_data = cudashm.get_contents_as_numpy(
                        shm_handle, output_dtype, output_shape)
                else:
                    output_data = results.as_numpy(result_name)

                if (output_data.dtype == np.object) and (config[3] == False):
                    output_data = output_data.astype(np.bytes_)

                if result_name == OUTPUT0:
                    tester.assertTrue(np.array_equal(output_data, output0_array),
                                      "{}, {} expected: {}, got {}".format(
                        model_name, OUTPUT0, output0_array, output_data))
                elif result_name == OUTPUT1:
                    tester.assertTrue(np.array_equal(output_data, output1_array),
                                      "{}, {} expected: {}, got {}".format(
                        model_name, OUTPUT1, output1_array, output_data))
                else:
                    tester.assertTrue(
                        False, "unexpected raw result {}".format(result_name))
            else:
                for b in range(batch_size):
                    # num_classes values must be returned and must
                    # match expected top values
                    if "nobatch" in pf:
                      class_list = results.as_numpy(result_name)
                    else:
                      class_list = results.as_numpy(result_name)[b]

                    tester.assertEqual(len(class_list), num_classes)
                    if batch_size == 1:
                        expected0_flatten = output0_array.flatten()
                        expected1_flatten = output1_array.flatten()
                    else:
                        expected0_flatten = output0_array[b].flatten()
                        expected1_flatten = output1_array[b].flatten()

                    for idx, class_label in enumerate(class_list):
                        # can't compare indices since could have different
                        # indices with the same value/prob, so check that
                        # the value of each index equals the expected value.
                        # Only compare labels when the indices are equal.
                        if type(class_label) == str:
                            ctuple = class_label.split(':')
                        else:
                            ctuple = "".join(chr(x)
                                         for x in class_label).split(':')
                        cval = float(ctuple[0])
                        cidx = int(ctuple[1])
                        if result_name == OUTPUT0:
                            tester.assertEqual(cval, expected0_flatten[cidx])
                            tester.assertEqual(
                                cval, expected0_flatten[expected0_sort_idx[b][idx]])
                            if cidx == expected0_sort_idx[b][idx]:
                                tester.assertEqual(ctuple[2], 'label{}'.format(
                                    expected0_sort_idx[b][idx]))
                        elif result_name == OUTPUT1:
                            tester.assertEqual(cval, expected1_flatten[cidx])
                            tester.assertEqual(
                                cval, expected1_flatten[expected1_sort_idx[b][idx]])
                        else:
                            tester.assertTrue(
                                False, "unexpected class result {}".format(result_name))

    # Unregister system/cuda shared memory regions if they exist
    su.unregister_cleanup_shm_regions(shm_regions, shm_handles, precreated_shm_regions, outputs,
                                      use_system_shared_memory, use_cuda_shared_memory)

    return results
    request_count = 2
    try:
        # Need to specify large enough concurrency to issue all the
        # inference requests to the server in parallel.
        triton_client = tritonhttpclient.InferenceServerClient(
            url=FLAGS.url, verbose=FLAGS.verbose, concurrency=request_count)
    except Exception as e:
        print("context creation failed: " + str(e))
        sys.exit()

    model_name = 'simple'

    # Infer
    inputs = []
    outputs = []
    inputs.append(tritonhttpclient.InferInput('INPUT0', [1, 16], "INT32"))
    inputs.append(tritonhttpclient.InferInput('INPUT1', [1, 16], "INT32"))

    # Create the data for the two input tensors. Initialize the first
    # to unique integers and the second to all ones.
    input0_data = np.arange(start=0, stop=16, dtype=np.int32)
    input0_data = np.expand_dims(input0_data, axis=0)
    input1_data = np.ones(shape=(1, 16), dtype=np.int32)

    # Initialize the data
    inputs[0].set_data_from_numpy(input0_data, binary_data=True)
    inputs[1].set_data_from_numpy(input1_data, binary_data=True)

    outputs.append(
        tritonhttpclient.InferRequestedOutput('OUTPUT0', binary_data=True))
    outputs.append(
Ejemplo n.º 4
0
    def _test_unicode_bytes(self, model_name):
        # We use a simple model that takes an input tensor of 8 byte strings
        # and returns an output tensors of 8 strings. The output tensor
        # is the same as the input tensor.

        # Create the inference server client for the model.
        triton_client = tritonhttpclient.InferenceServerClient(
            "localhost:8000", verbose=True)

        # Create the data for the input tensor. Initialize the tensor to 8
        # byte strings. (dtype of np.bytes_)
        # Sample string that should no longer cause failure
        in0 = np.array([
            [
                b'\nF\n\'\n\x01a\x12"\x1a \n\x1e\xfa\x03\x94\x01\x0f\xd7\x02\xf1\x05\xdf\x01\x82\x03\xb5\x05\xc1\x07\xba\x06\xff\x06\xc7\x07L\xf5\x03\xe2\x07\xa9\x03\n\x0c\n\x01b\x12\x07\x1a\x05\n\x03\x89\xcc=\n\r\n\x01c\x12\x08\x12\x06\n\x04\xdf\\\xcb\xbf'
            ],
            [
                b'\n:\n\x1a\n\x01a\x12\x15\x1a\x13\n\x11*\xe3\x05\xc5\x06\xda\x07\xcb\x06~\xb1\x05\xb3\x01\xa9\x02\x15\n\r\n\x01b\x12\x08\x1a\x06\n\x04\xf6\xa2\xc5\x01\n\r\n\x01c\x12\x08\x12\x06\n\x04\xbb[\n\xbf'
            ],
            [
                b'\nL\n-\n\x01a\x12(\x1a&\n$\x87\x07\xce\x01\xe7\x06\xee\x04\xe1\x03\xf1\x03\xd7\x07\xbe\x02\xb8\x05\xe0\x05\xe4\x01\x88\x06\xb6\x03\xb9\x05\x83\x06\xf8\x04\xe2\x04\xf4\x06\n\x0c\n\x01b\x12\x07\x1a\x05\n\x03\x89\xcc=\n\r\n\x01c\x12\x08\x12\x06\n\x04\xbc\x99+@'
            ],
            [
                b'\n2\n\x12\n\x01a\x12\r\x1a\x0b\n\t\x99\x02\xde\x04\x9f\x04\xc5\x053\n\r\n\x01b\x12\x08\x1a\x06\n\x04\xf6\xa2\xc5\x01\n\r\n\x01c\x12\x08\x12\x06\n\x04\x12\x07\x83\xbe'
            ],
            [
                b'\nJ\n\r\n\x01b\x12\x08\x1a\x06\n\x04\x9b\x94\xad\x04\n\r\n\x01c\x12\x08\x12\x06\n\x04\xc3\x8a\x08\xbf\n*\n\x01a\x12%\x1a#\n!\x9c\x02\xb2\x02\xcd\x02\x9d\x07\x8d\x01\xb6\x05a\xf1\x01\xf0\x05\xdb\x02\xac\x04\xbd\x05\xe0\x04\xd2\x06\xaf\x02\xa8\x01\x8b\x04'
            ],
            [
                b'\n3\n\x13\n\x01a\x12\x0e\x1a\x0c\n\n<\xe2\x05\x8a\x01\xb3\x07?\xfd\x01\n\r\n\x01b\x12\x08\x1a\x06\n\x04\xf6\xa2\xc5\x01\n\r\n\x01c\x12\x08\x12\x06\n\x04\x1b\x931\xbf'
            ],
            [
                b'\n&\n\x07\n\x01a\x12\x02\x1a\x00\n\x0c\n\x01b\x12\x07\x1a\x05\n\x03\x89\xcc=\n\r\n\x01c\x12\x08\x12\x06\n\x04{\xbc\x0e>'
            ],
            [
                b'\nF\n\'\n\x01a\x12"\x1a \n\x1e\x97\x01\x93\x02\x9e\x01\xac\x06\xff\x01\xd8\x05\xe1\x07\xd8\x04g]\x9a\x05\xff\x06\xde\x07\x8f\x04\x97\x04\xda\x03\n\x0c\n\x01b\x12\x07\x1a\x05\n\x03\x9a\xb7I\n\r\n\x01c\x12\x08\x12\x06\n\x04\xfb\x87\x83\xbf'
            ]
        ],
                       dtype='|S78').flatten()

        # Send inference request to the inference server. Get results for
        # both output tensors.
        inputs = []
        outputs = []
        inputs.append(tritonhttpclient.InferInput('INPUT0', in0.shape,
                                                  "BYTES"))
        inputs[0].set_data_from_numpy(in0)

        outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0'))

        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)

        out0 = results.as_numpy('OUTPUT0')
        # We expect there to be 1 results (with batch-size 1). Verify
        # that all 8 result elements are the same as the input.
        self.assertTrue(np.array_equal(in0, out0))

        # Same test but for np.object_
        in0_object = in0.astype(np.object)
        inputs = []
        outputs = []
        inputs.append(
            tritonhttpclient.InferInput('INPUT0', in0_object.shape, "BYTES"))
        inputs[0].set_data_from_numpy(in0_object)

        outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0'))

        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)

        output0_object = results.as_numpy('OUTPUT0')
        # We expect there to be 1 results (with batch-size 1). Verify
        # that all 8 result elements are the same as the input.
        self.assertTrue(np.array_equal(in0_object, output0_object))

        # Verify that np.bytes_ and np.object_ are the same.
        self.assertTrue(np.array_equal(out0, output0_object))

        # Same test but for np.bytes_
        in0_bytes = in0.astype(np.bytes_)
        inputs = []
        outputs = []
        inputs.append(
            tritonhttpclient.InferInput('INPUT0', in0_bytes.shape, "BYTES"))
        inputs[0].set_data_from_numpy(in0_object)

        outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0'))

        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)

        output0_byte = results.as_numpy('OUTPUT0')
        # We expect there to be 1 results (with batch-size 1). Verify
        # that all 8 result elements are the same as the input.
        self.assertTrue(np.array_equal(in0_bytes, output0_byte))

        # Verify that the output is the same as before
        self.assertTrue(np.array_equal(out0, output0_byte))
Ejemplo n.º 5
0
    # to occupy an SM
    model_name = FLAGS.model
    model_version = "1"

    # Create the data for the input tensor.
    input_data = np.array([FLAGS.delay], dtype=np.int32)

    # Create the inference context for the model.
    if FLAGS.protocol.lower() == "grpc":
        triton_client = tritongrpcclient.InferenceServerClient(
            FLAGS.url, verbose=FLAGS.verbose)
        inputs = [tritongrpcclient.InferInput('in', input_data.shape, "INT32")]
    else:
        triton_client = tritonhttpclient.InferenceServerClient(
            FLAGS.url, verbose=FLAGS.verbose)
        inputs = [tritonhttpclient.InferInput('in', input_data.shape, "INT32")]

    inputs[0].set_data_from_numpy(input_data)

    # Send N inference requests to the inference server. Time the inference for both
    # requests
    start_time = time()

    for i in range(FLAGS.count):
        triton_client.async_infer(model_name,
                                  inputs,
                                  partial(completion_callback),
                                  model_version=model_version,
                                  request_id=str(i),
                                  headers=FLAGS.http_headers)
Ejemplo n.º 6
0
    def test_nobatch_request_for_batching_model(self):
        input_size = 16

        # graphdef_int32_int8_int8 has a batching version with max batch size of 8.
        # The server should return an error if the batch size is not included in the
        # input shapes.
        tensor_shape = (input_size, )
        for protocol in ["http", "grpc"]:
            model_name = tu.get_model_name("graphdef", np.int32, np.int8,
                                           np.int8)
            in0 = np.random.randint(low=0,
                                    high=100,
                                    size=tensor_shape,
                                    dtype=np.int32)
            in1 = np.random.randint(low=0,
                                    high=100,
                                    size=tensor_shape,
                                    dtype=np.int32)

            inputs = []
            outputs = []
            if protocol == "http":
                triton_client = tritonhttpclient.InferenceServerClient(
                    url='localhost:8000', verbose=True)
                inputs.append(
                    tritonhttpclient.InferInput('INPUT0', tensor_shape,
                                                "INT32"))
                inputs.append(
                    tritonhttpclient.InferInput('INPUT1', tensor_shape,
                                                "INT32"))
                outputs.append(
                    tritonhttpclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(
                    tritonhttpclient.InferRequestedOutput('OUTPUT1'))
            else:
                triton_client = tritongrpcclient.InferenceServerClient(
                    url='localhost:8001', verbose=True)
                inputs.append(
                    tritongrpcclient.InferInput('INPUT0', tensor_shape,
                                                "INT32"))
                inputs.append(
                    tritongrpcclient.InferInput('INPUT1', tensor_shape,
                                                "INT32"))
                outputs.append(
                    tritongrpcclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(
                    tritongrpcclient.InferRequestedOutput('OUTPUT1'))

            # Initialize the data
            inputs[0].set_data_from_numpy(in0)
            inputs[1].set_data_from_numpy(in1)

            try:
                results = triton_client.infer(model_name,
                                              inputs,
                                              outputs=outputs)
                self.assertTrue(
                    False,
                    "expected failure with no batch request for batching model"
                )
            except InferenceServerException as ex:
                pass
Ejemplo n.º 7
0
    requests = []
    responses = []
    result_filenames = []
    request_ids = []
    image_idx = 0
    last_request = False
    user_data = UserData()

    # Holds the handles to the ongoing HTTP async requests.
    async_requests = []

    sent_count = 0
    try:
        for image in image_data:
            sent_count += 1
            inputs = [tritonhttpclient.InferInput(input_name, image.shape, dtype)]
            outputs = [tritonhttpclient.InferRequestedOutput(output_name)]

            inputs[0].set_data_from_numpy(image, binary_data=True)
            responses.append(
                triton_client.infer(model_name,
                                    inputs,
                                    request_id=str(sent_count),
                                    model_version=model_version,
                                    outputs=outputs))
    except InferenceServerException as e:
            print("inference failed: " + str(e))
            sys.exit(1)
    
    for response in responses:
        this_id = response.get_response()["id"]
Ejemplo n.º 8
0
        ]],
        dtype='float32')  #np.random.rand(*shape).astype(np.float32)
    input1_data = np.array([[
        123, 630, 1741, 169492, 439138, 549150, 549420, 559916, 561648, 562203,
        595960, 617230, 785371, 951890, 954587, 961209, 1127998, 1268021,
        1272637, 1273122, 1274952, 1284808, 1599234, 1599246, 1661028, 1679074,
        1713689
    ]],
                           dtype='uint32')
    input2_data = np.array([[
        0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
        20, 21, 22, 23, 24, 25, 26
    ]],
                           dtype='int32')
    inputs = [
        httpclient.InferInput("DES", input0_data.shape,
                              np_to_triton_dtype(input0_data.dtype)),
        httpclient.InferInput("CATCOLUMN", input1_data.shape,
                              np_to_triton_dtype(input1_data.dtype)),
        httpclient.InferInput("ROWINDEX", input2_data.shape,
                              np_to_triton_dtype(input2_data.dtype)),
    ]

    inputs[0].set_data_from_numpy(input0_data)
    inputs[1].set_data_from_numpy(input1_data)
    inputs[2].set_data_from_numpy(input2_data)
    outputs = [httpclient.InferRequestedOutput("OUTPUT0")]

    response = client.infer(model_name,
                            inputs,
                            request_id=str(1),
                            outputs=outputs)
    for idx in range(batch_size):
        input_filenames.append(filenames[idx])
        repeated_image_data.append(image_data[idx])

    batched_image_data = np.stack(repeated_image_data, axis=0)

    # Set the input data
    inputs = []
    if FLAGS.protocol.lower() == "grpc":
        inputs.append(
            tritongrpcclient.InferInput(input_name, batched_image_data.shape,
                                        "BYTES"))
        inputs[0].set_data_from_numpy(batched_image_data)
    else:
        inputs.append(
            tritonhttpclient.InferInput(input_name, batched_image_data.shape,
                                        "BYTES"))
        inputs[0].set_data_from_numpy(batched_image_data, binary_data=True)

    outputs = []
    if FLAGS.protocol.lower() == "grpc":
        outputs.append(
            tritongrpcclient.InferRequestedOutput(output_name,
                                                  class_count=FLAGS.classes))
    else:
        outputs.append(
            tritonhttpclient.InferRequestedOutput(output_name,
                                                  binary_data=False,
                                                  class_count=FLAGS.classes))

    # Send request
    result = triton_client.infer(model_name, inputs, outputs=outputs)
    # Put input data values into shared memory
    shm.set_shared_memory_region(shm_ip0_handle, [input0_data_serialized])
    shm.set_shared_memory_region(shm_ip1_handle, [input1_data_serialized])

    # Register Input0 and Input1 shared memory with Triton Server
    triton_client.register_system_shared_memory("input0_data",
                                                "/input0_simple",
                                                input0_byte_size)
    triton_client.register_system_shared_memory("input1_data",
                                                "/input1_simple",
                                                input1_byte_size)

    # Set the parameters to use data from shared memory
    inputs = []
    inputs.append(httpclient.InferInput('INPUT0', [1, 16], "BYTES"))
    inputs[-1].set_shared_memory("input0_data", input0_byte_size)

    inputs.append(httpclient.InferInput('INPUT1', [1, 16], "BYTES"))
    inputs[-1].set_shared_memory("input1_data", input1_byte_size)

    outputs = []
    outputs.append(httpclient.InferRequestedOutput('OUTPUT0',
                                                   binary_data=True))
    outputs[-1].set_shared_memory("output0_data", output0_byte_size)

    outputs.append(httpclient.InferRequestedOutput('OUTPUT1',
                                                   binary_data=True))
    outputs[-1].set_shared_memory("output1_data", output1_byte_size)

    results = triton_client.infer(model_name=model_name,
Ejemplo n.º 11
0
from tritonclientutils import *
import tritongrpcclient as grpcclient
import tritonhttpclient as httpclient

import numpy as np

model_name = "python_float32_float32_float32"
shape = [4]

with httpclient.InferenceServerClient("localhost:8000") as client:
    input0_data = np.random.rand(*shape).astype(np.float32)
    input1_data = np.random.rand(*shape).astype(np.float32)
    inputs = [
        httpclient.InferInput("INPUT0", input0_data.shape,
                              np_to_triton_dtype(input0_data.dtype)),
        httpclient.InferInput("INPUT1", input1_data.shape,
                              np_to_triton_dtype(input1_data.dtype)),
    ]

    inputs[0].set_data_from_numpy(input0_data)
    inputs[1].set_data_from_numpy(input1_data)

    outputs = [
        httpclient.InferRequestedOutput("OUTPUT0"),
        httpclient.InferRequestedOutput("OUTPUT1"),
    ]

    response = client.infer(model_name,
                            inputs,
                            request_id=str(1),
                            outputs=outputs)