Ejemplo n.º 1
0
    def test_add_features_to_only_a_part(self):
        augmenter = FeatureAugmenter(column_value="val",
                                     column_id="id",
                                     column_sort="sort",
                                     column_kind="kind",
                                     settings=self.settings)

        augmenter.set_timeseries_container(self.test_df)

        X_with_not_all_ids = pd.DataFrame([{"feature_1": 1}], index=[1])
        X_transformed = augmenter.transform(X_with_not_all_ids)

        for i in X_transformed.index:
            self.assertIn(i, X_with_not_all_ids.index)

        for i in X_with_not_all_ids.index:
            self.assertIn(i, X_transformed.index)

        self.assertEqual(X_transformed.shape, (1, 3))
        self.assertEqual(X_transformed.index, [1])

        # Features are not allowed to be NaN
        for index, row in X_transformed.iterrows():
            print(index, row)
            self.assertFalse(np.isnan(row["a__length"]))
            self.assertFalse(np.isnan(row["b__length"]))
Ejemplo n.º 2
0
    def test_fit_and_transform(self):
        augmenter = FeatureAugmenter(column_value="val", column_id="id", column_sort="sort",
                                     column_kind="kind",
                                     kind_to_fc_parameters=self.kind_to_fc_parameters)

        # Fit should do nothing
        returned_df = augmenter.fit()
        six.assertCountEqual(self, returned_df.__dict__, augmenter.__dict__)
        self.assertRaises(RuntimeError, augmenter.transform, None)

        augmenter.set_timeseries_container(self.test_df)

        # Add features to all time series
        X_with_index = pd.DataFrame([{"feature_1": 1}]*2, index=[10, 500])
        X_transformed = augmenter.transform(X_with_index)

        # Require same shape
        for i in X_transformed.index:
            self.assertIn(i, X_with_index.index)

        for i in X_with_index.index:
            self.assertIn(i, X_transformed.index)

        self.assertEqual(X_transformed.shape, (2, 3))

        # Preserve old features
        six.assertCountEqual(self, list(X_transformed.columns), ["feature_1", "a__length", "b__length"])

        # Features are not allowed to be NaN
        for index, row in X_transformed.iterrows():
            print((index, row))
            self.assertFalse(np.isnan(row["a__length"]))
            self.assertFalse(np.isnan(row["b__length"]))
Ejemplo n.º 3
0
    def test_add_features_to_only_a_part(self):
        augmenter = FeatureAugmenter(column_value="val", column_id="id", column_sort="sort",
                                     column_kind="kind",
                                     kind_to_fc_parameters=self.kind_to_fc_parameters,
                                     n_jobs=0,
                                     disable_progressbar = True)

        augmenter.set_timeseries_container(self.test_df)

        X_with_not_all_ids = pd.DataFrame([{"feature_1": 1}], index=[10])
        X_transformed = augmenter.transform(X_with_not_all_ids)

        for i in X_transformed.index:
            self.assertIn(i, X_with_not_all_ids.index)

        for i in X_with_not_all_ids.index:
            self.assertIn(i, X_transformed.index)

        self.assertEqual(X_transformed.shape, (1, 3))
        self.assertEqual(X_transformed.index, [10])

        # Features are not allowed to be NaN
        for index, row in X_transformed.iterrows():
            print((index, row))
            self.assertFalse(np.isnan(row["a__length"]))
            self.assertFalse(np.isnan(row["b__length"]))