Ejemplo n.º 1
0
    def from_hdf5(cls, path):
        """
        Load model from a HDF5 file.
        Requires ``h5py`` http://docs.h5py.org/

        Parameters
        ----------
        path : str
            Full path to file.

        Returns
        -------
        Model instance
        """
        if not HDF5_INSTALLED:
            raise ImportError(h5py_msg)

        model = hdftools.load_dict(path, 'data')
        model = cls._byte2string(model)

        for k in model['hyper_params'].keys():
            if model['hyper_params'][k] == 'None':
                model['hyper_params'][k] = None

        return cls._organize_model(cls, model)
Ejemplo n.º 2
0
def test_hdftools():
    dtypes = [numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,
              numpy.float, numpy.float32, numpy.float64]

    d = {}

    for dtype in dtypes:
        name = numpy.dtype(dtype).name
        d[name] = (numpy.random.rand(100, 100) * 10).astype(dtype)

    fname = os.path.join(tmp_dir, 'hdf_test.hdf5')

    hdftools.save_dict(d, filename=fname, group='data')

    d2 = hdftools.load_dict(fname, 'data')

    for k in d2.keys():
        numpy.testing.assert_equal(d[k], d2[k])