Ejemplo n.º 1
0
def compareCrossovers():
    cities = tsp.load_city_locs("cities1000.txt")
    permutationA = tsp.rand_perm(1000)
    permutationB = tsp.rand_perm(1000)

    print("Original A: ", tsp.total_dist(permutationA, cities))
    print("Original B: ", tsp.total_dist(permutationB, cities))

    # Order Crossover
    offSpringA, offSpringB = crossovers.orderCrossover(permutationA,
                                                       permutationB)
    print("OffspringB Order: ", tsp.total_dist(offSpringA, cities))
    print("OffspringB Order: ", tsp.total_dist(offSpringB, cities))

    # Partially Mapped Crossover
    offSpringA, offSpringB = crossovers.partiallyMappedCrossover(
        permutationA, permutationB)
    print("OffspringB Partially Mapped: ", tsp.total_dist(offSpringA, cities))
    print("OffspringB Partially Mapped: ", tsp.total_dist(offSpringB, cities))

    # Best Edges Crossover
    offSpringA, offSpringB = bestEdgesSearch(permutationA, permutationB,
                                             cities)
    print("OffspringB Best Edges: ", tsp.total_dist(offSpringA, cities))
    print("OffspringB Best Edges: ", tsp.total_dist(offSpringB, cities))
Ejemplo n.º 2
0
def optimizedBestSearch(fname, max_iter=100, pop_size=50, percentToSwitch=5):
    city_locs = tsp.load_city_locs(fname)
    n = len(city_locs)
    curr_gen = [tsp.rand_perm(n) for i in range(pop_size)]
    curr_gen = [(tsp.total_dist(p, city_locs), p) for p in curr_gen]
    curr_gen.sort()

    bestScore = curr_gen[0][0]
    bestPermuation = curr_gen[0][1]
    useMutateSearch = False

    print(
        f'Optimized bestEdges("{fname}", max_iter={max_iter}, pop_size={pop_size}) ...'
    )
    for i in range(max_iter):
        print("iteration: ", i)
        top_half = [p[1] for p in curr_gen[:int(pop_size / 2)]]
        next_gen = top_half[:]
        while len(next_gen) < pop_size:
            parentA = random.choice(top_half)
            parentB = random.choice(top_half)
            while parentA == parentB:
                parentA = random.choice(top_half)
                parentB = random.choice(top_half)
            if (useMutateSearch):
                first = parentA[:]
                second = parentB[:]
            else:
                first, second = bestEdgesSearch(parentA, parentB, city_locs)

            tsp.do_rand_swap(first)
            tsp.do_rand_swap(second)
            next_gen.append(first)
            next_gen.append(second)

        next_gen = next_gen[:pop_size]
        assert len(next_gen) == pop_size
        curr_gen = [(tsp.total_dist(p, city_locs), p) for p in next_gen]
        curr_gen.sort()

        useMutateSearch = ifSwitchToMutate(bestScore, curr_gen[0][0],
                                           percentToSwitch)

        if (curr_gen[0][0] < bestScore):
            bestScore = curr_gen[0][0]
            bestPermuation = curr_gen[0][1]

    print(
        f'... Optimized bestEdges("{fname}", max_iter={max_iter}, pop_size={pop_size})'
    )
    print()
    print(
        f'After {max_iter} generations of {pop_size} permutations, the best is:'
    )
    print(f'score = {bestScore}')
    print(bestPermuation)
    assert tsp.is_good_perm(bestPermuation)
Ejemplo n.º 3
0
def gen_rand_pop(fname, n_pop):

    city_locs = tsp.load_city_locs(fname)
    n = len(city_locs)
    curr_gen = [tsp.rand_perm(n) for i in range(n_pop)]
    curr_gen = [(tsp.total_dist(p, city_locs), p) for p in curr_gen]
    curr_gen.sort()
    assert len(curr_gen) == n_pop

    return curr_gen
Ejemplo n.º 4
0
def orderCrossoverTest(fname, max_iter, pop_size):
    city_locs = tsp.load_city_locs(fname)
    n = len(city_locs)
    # generate permutations for a specific population size
    curr_gen = [tsp.rand_perm(n) for i in range(pop_size)]
    # per population calculate total distance
    curr_gen = [(tsp.total_dist(p, city_locs), p) for p in curr_gen]
    curr_gen.sort()
    assert len(curr_gen) == pop_size

    print(
        f'orderCrossover("{fname}", max_iter={max_iter}, pop_size={pop_size}) ...'
    )
    for i in range(max_iter):
        # copy the top 50% of the population to the next generation, and for the rest randomly
        # cross-breed pairs
        top_half = [p[1] for p in curr_gen[:int(pop_size / 2)]]
        next_gen = top_half[:]
        while len(next_gen) < pop_size:
            parentA = random.choice(top_half)
            parentB = random.choice(top_half)
            while parentA == parentB:
                parentA = random.choice(top_half)
                parentB = random.choice(top_half)
            first, second = orderCrossover(parentA, parentB)
            tsp.do_rand_swap(first)
            tsp.do_rand_swap(second)

            next_gen.append(first)
            next_gen.append(second)

        next_gen = next_gen[:pop_size]

        # create the next generation of (score, permutations) pairs
        assert len(next_gen) == pop_size
        curr_gen = [(tsp.total_dist(p, city_locs), p) for p in next_gen]
        curr_gen.sort()

    print(
        f'... orderCrossover("{fname}", max_iter={max_iter}, pop_size={pop_size})'
    )
    print()
    print(
        f'After {max_iter} generations of {pop_size} permutations, the best is:'
    )
    print(f'score = {curr_gen[0][0]}')
    # print(curr_gen[0][1])
    assert tsp.is_good_perm(curr_gen[0][1])