Ejemplo n.º 1
0
def create_pindex_test(table_name,
                       T,
                       T_var,
                       k,
                       k_var,
                       direct_var,
                       index_name=None,
                       agg_interval=1.,
                       col_to_row_ratio=10,
                       time_column='row_id'):

    interface = SqlImplementation(driver="postgresql",
                                  host="localhost",
                                  database="querytime_test",
                                  user="******",
                                  password="******")
    time_series_table = [table_name, 'ts', time_column]
    T0 = 1000
    gamma = 0.5
    TSPD = TSPI(T=T,
                T_var=T,
                rank=k,
                rank_var=k_var,
                agg_interval=agg_interval,
                col_to_row_ratio=col_to_row_ratio,
                index_name=index_name,
                gamma=gamma,
                interface=interface,
                time_series_table=time_series_table,
                direct_var=direct_var)
    TSPD.create_index()
    print(TSPD.ts_model._denoiseTS()[-10:], TSPD.ts_model.TimeSeriesIndex)
Ejemplo n.º 2
0
def ts_table_tests(init_points=10**4,
                   update_points=[1000, 100, 5000, 10000],
                   T=1000,
                   direct_var=True,
                   index_name='ts_basic_ts_pindex'):
    interface = SqlImplementation(driver="postgresql",
                                  host="localhost",
                                  database="querytime_test",
                                  user="******",
                                  password="******")

    df = pd.DataFrame(data={'ts': np.arange(init_points).astype('float')})
    timestamps = pd.date_range('2012-10-01 00:00:00',
                               periods=init_points + 1,
                               freq='5s')
    end = timestamps[-1]
    df.index = timestamps[:-1]
    interface.create_table('ts_basic_ts',
                           df,
                           'timestamp',
                           index_label='timestamp')
    time_series_table = ['ts_basic_ts', 'ts', 'timestamp']
    T0 = 1000
    gamma = 0.5
    k = 2
    k_var = 1
    TSPD = TSPI(_dir='C:/Program Files/PostgreSQL/10/data/',
                agg_interval=5,
                T=T,
                T_var=T,
                rank=k,
                rank_var=k_var,
                col_to_row_ratio=10,
                index_name=index_name,
                gamma=gamma,
                interface=interface,
                time_series_table=time_series_table,
                direct_var=direct_var)
    TSPD.create_index()
    interface = SqlImplementation(driver="postgresql",
                                  host="localhost",
                                  database="querytime_test",
                                  user="******",
                                  password="******")
    for points in update_points:
        df = pd.DataFrame(
            data={
                'ts': np.arange(init_points, points +
                                init_points).astype('float')
            })
        timestamps = pd.date_range(end, periods=points + 1, freq='5s')
        end = timestamps[-1]
        df.index = timestamps[:-1]
        interface.bulk_insert('ts_basic_ts', df, index_label='timestamp')
        init_points += points
        print('successfully updated %s points' % points)
Ejemplo n.º 3
0
gamma = 0.5
k = 2
no_ts = 3
# get_prediction_range('tspdb.pindex_mixturets2', 'mixturets2', 'ts_0', interface, 20000,20020)
# get_prediction('tspdb.pindex_mixturets2', 'mixturets2', 'ts_0', interface, 100000+1)
N = 10**6
data = np.zeros([N, no_ts])
for i in range(no_ts):
    # data[:,i] = (i+1)*np.arange(N)+np.random.normal(0,0.1,N)
    data[:, i] = i

TSPD = TSPI(T=T,
            rank=k,
            interface=SqlImplementation(driver="postgresql",
                                        host="localhost",
                                        database="querytime_test",
                                        user="******",
                                        password="******"),
            value_column=['ts_1', 'ts_7', 'ts_9'],
            time_series_table_name=time_series_table[0],
            time_column=time_series_table[2])

TSPD.update_model(data)
TSPD.write_model(1)

TSPD2 = load_pindex(interface, 'tspdb.pindex_mixturets_var')
TSPD2 = load_pindex2(interface, 'tspdb.pindex_mixturets_var')
N2 = 10**2
data = np.zeros([N, no_ts])
for i in range(no_ts):
    data[:, i] = (i + 1) * np.arange(N, N + N2) + np.random.normal(0, 0.1, N)