Ejemplo n.º 1
0
def main(doTubeFormat, inFileName, outTrajIDfileName, featPath, nrTrajThresh4Tube=0):

    tube2trajIDs.check()
    
    outPath = os.path.dirname(outTrajIDfileName)
    if not os.path.exists( outPath ):
        os.makedirs(outPath)

    # read trajectory positions
    print '\tGet trajectory positions;',
    geoFeat = denseTraj.getFeatFromFileByName(featPath, 'geo')

    
    # if proposals are stored as Tubes already, read them
    if doTubeFormat:
        tubeProposals = TubeList()
        tubeProposals.readHDF5(inFileName)        
        # initialize with a single name
        inHDF5fileClusts = ['tubes']
    else:
        print '\tGet video dimensions;', 
        vidInfo = denseTraj.getFeatFromFileByName(featPath, 'vidinfo')
        xmax = vidInfo[1]
        ymax = vidInfo[2]    
        # input cluster file
        inHDF5fileClusts = h5py.File( inFileName, 'r')
        
    # go over all features
    totNrProposals = 0
    for featName in inHDF5fileClusts:

        if not doTubeFormat:
            # get the clustered proposals for this feature type in SLINK pointer-representation
            dset = inHDF5fileClusts[featName]
            mergedTracks = dset[()]           
            # convert pointer-representation to tube proposals 
            if len(mergedTracks.shape) > 1 and mergedTracks.shape[0] > 1:
                tubeProposals = denseTraj.createProposals(mergedTracks, geoFeat, nrTrajThresh4Tube, xmax, ymax)

        nrProposals = len(tubeProposals)
        print '\tFeature: "%s", number of proposals: %d;' % (featName,nrProposals)
        
        # if ok                    
        if nrProposals > 0:
            # write as traj IDs

            if totNrProposals==0:
                outHDF5file = h5py.File( outTrajIDfileName, 'w', compression="gzip", compression_opts=9)
            
            for j in range(nrProposals):
                trajIDs = tubeProposals[j].tube2trajIDs(geoFeat)
                outHDF5file.create_dataset(str(totNrProposals), data=trajIDs)
                totNrProposals += 1
            
    print '\tWrite trajectory IDs to', outTrajIDfileName
    outHDF5file.close()
Ejemplo n.º 2
0
def main(doTubeFormat, inFileName, outIoUfile, gtPath, nrTrajThresh4Tube=-1, featPath=''):

    # check if cython is used    
    tubeIoU.check()
    
    # read ground truth tubes
    print '\tRead ground truth;',
    gtTubes = TubeList()
    gtTubes.readHDF5(gtPath)

    outPath = os.path.dirname(outIoUfile)
    if not os.path.exists( outPath ):
        os.makedirs(outPath)

    # if proposals are stored as Tubes already, read them
    if doTubeFormat:
        tubeProposals = TubeList()
        tubeProposals.readHDF5(inFileName)        
        # initialize with a single name
        inHDF5fileClusts = ['tubes']
    else:
        # otherwise, read trajectory positions and vidinfo to generate proposals later
        print '\tGet trajectory positions;', 
        geoFeat = denseTraj.getFeatFromFileByName(featPath, 'geo')
        print '\tGet video dimensions;', 
        vidInfo = denseTraj.getFeatFromFileByName(featPath, 'vidinfo')
        xmax = vidInfo[1]
        ymax = vidInfo[2]
        # input cluster file
        inHDF5fileClusts = h5py.File( inFileName, 'r')

    aboMax = []
    # go over all features
    
    for featName in inHDF5fileClusts:
    
        if not doTubeFormat:
            # get the clustered proposals for this feature type in SLINK pointer-representation
            dset = inHDF5fileClusts[featName]
            mergedTracks = dset[()]           
            # convert pointer-representation to tube proposals 
            if len(mergedTracks.shape) > 1 and mergedTracks.shape[0] > 1:
                tubeProposals = denseTraj.createProposals(mergedTracks, geoFeat, nrTrajThresh4Tube, xmax, ymax)
       
        nrProposals = len(tubeProposals)
        print '\tFeature: "%s", number of proposals: %d;' % (featName,nrProposals),
        # if ok             
        if nrProposals > 0:

            # get Intersection over Union scores
            aboMatCur = tubeProposals.computeTubeOverlap(gtTubes)
                
            # if first feature, write to new file otherwise append to existing file            
            if aboMax == []:
                fileOut = open(outIoUfile, 'w')
            else:
                fileOut = open(outIoUfile, 'a')
            
            # write scores
            for prop in range(aboMatCur.shape[0]):
                for score in aboMatCur[prop,:]:
                    fileOut.write('%f ' % score)
                fileOut.write('\n')
            fileOut.close()

            # keep track of the maximum score
            curMax = np.max(aboMatCur, axis=0)
            if aboMax == []:
                aboMax = curMax
            else:
                aboMax = np.maximum( aboMax, curMax)

            print 'Best IoUs:',  curMax, '; Best so far:', aboMax
            
    print '\tWriting IoU scores to', outIoUfile    
    if not doTubeFormat:
        inHDF5fileClusts.close()
Ejemplo n.º 3
0
def createProposals(mergedTracks, featSpat, cutOffLevel, xmax=np.inf, ymax=np.inf, regionSize=15):
    """create SingleTube proposals from the 'mergedTracks' clusters in trajectory clusters format"""
    
    # how many proposals
    nrProposals = mergedTracks.shape[0]
    # how many trajectory tracks
    nrTracks = featSpat.shape[0]

    zeroFound = True
    while zeroFound:
        # the list of tubes that will be created
        tubeLst = TubeList()
        # the list of tubes that will be sub-sampled
        selectedTubes = TubeList()
        
        # keep track of the nr of trajectories per merge
        nrTraj = np.zeros(nrProposals)
        nrTrajT1 = np.zeros(nrProposals)
        nrTrajT2 = np.zeros(nrProposals)
        
        for p in xrange(nrProposals):
                # clusterformat: a merged ID, and trackIDs t1 and t2
                [mergedID, t1, t2] = mergedTracks[p][0:3]
                
                if t1 < nrTracks:
                    # if a trackID is lower than nrTracks it is a trajectory
                    tube1 = traj2tube(featSpat[t1,0], featSpat[t1,1:], xmax, ymax, regionSize)
                    nrT1 = 1

                else:
                    # otherwise it is a previously merged proposal
                    idx = int(t1) - nrTracks
                    tube1 = tubeLst[idx]
                    nrT1 = nrTraj[idx]
            
                if t2 < nrTracks:
                    # if a trackID is lower than nrTracks it is a trajectory
                    tube2 = traj2tube(featSpat[t2,0], featSpat[t2,1:], xmax, ymax, regionSize)
                    nrT2 = 1
                else:
                    # otherwise it is a previously merged proposal
                    idx = int(t2) - nrTracks
                    tube2 = tubeLst[idx]
                    nrT2 = nrTraj[idx]

                # the nr of trajectories of this merge
                nrTraj[p] = nrT1 + nrT2
                nrTrajT1[p] = nrT1 
                nrTrajT2[p] = nrT2 

                # make a copy of t1 and merge it with t2
                newTube = tube1.copy()
                newTube.merge(tube2)
                tubeLst.append(newTube)
                                        
                # if to subsample, add to the selected list
                if nrT1 >= cutOffLevel and nrT2 >= cutOffLevel:
                    selectedTubes.append(newTube)
        if len(selectedTubes) == 0:
            cutOffLevel = cutOffLevel/2
            if cutOffLevel <= 0:
                return selectedTubes
        else:
            return selectedTubes 
Ejemplo n.º 4
0
def main(doTubeFormat,
         inFileName,
         outIoUfile,
         gtPath,
         nrTrajThresh4Tube=-1,
         featPath=''):

    # check if cython is used
    tubeIoU.check()

    # read ground truth tubes
    print '\tRead ground truth;',
    gtTubes = TubeList()
    gtTubes.readHDF5(gtPath)

    outPath = os.path.dirname(outIoUfile)
    if not os.path.exists(outPath):
        os.makedirs(outPath)

    # if proposals are stored as Tubes already, read them
    if doTubeFormat:
        tubeProposals = TubeList()
        tubeProposals.readHDF5(inFileName)
        # initialize with a single name
        inHDF5fileClusts = ['tubes']
    else:
        # otherwise, read trajectory positions and vidinfo to generate proposals later
        print '\tGet trajectory positions;',
        geoFeat = denseTraj.getFeatFromFileByName(featPath, 'geo')
        print '\tGet video dimensions;',
        vidInfo = denseTraj.getFeatFromFileByName(featPath, 'vidinfo')
        xmax = vidInfo[1]
        ymax = vidInfo[2]
        # input cluster file
        inHDF5fileClusts = h5py.File(inFileName, 'r')

    aboMax = []
    # go over all features

    for featName in inHDF5fileClusts:

        if not doTubeFormat:
            # get the clustered proposals for this feature type in SLINK pointer-representation
            dset = inHDF5fileClusts[featName]
            mergedTracks = dset[()]
            # convert pointer-representation to tube proposals
            if len(mergedTracks.shape) > 1 and mergedTracks.shape[0] > 1:
                tubeProposals = denseTraj.createProposals(
                    mergedTracks, geoFeat, nrTrajThresh4Tube, xmax, ymax)

        nrProposals = len(tubeProposals)
        print '\tFeature: "%s", number of proposals: %d;' % (featName,
                                                             nrProposals),
        # if ok
        if nrProposals > 0:

            # get Intersection over Union scores
            aboMatCur = tubeProposals.computeTubeOverlap(gtTubes)

            # if first feature, write to new file otherwise append to existing file
            if aboMax == []:
                fileOut = open(outIoUfile, 'w')
            else:
                fileOut = open(outIoUfile, 'a')

            # write scores
            for prop in range(aboMatCur.shape[0]):
                for score in aboMatCur[prop, :]:
                    fileOut.write('%f ' % score)
                fileOut.write('\n')
            fileOut.close()

            # keep track of the maximum score
            curMax = np.max(aboMatCur, axis=0)
            if aboMax == []:
                aboMax = curMax
            else:
                aboMax = np.maximum(aboMax, curMax)

            print 'Best IoUs:', curMax, '; Best so far:', aboMax

    print '\tWriting IoU scores to', outIoUfile
    if not doTubeFormat:
        inHDF5fileClusts.close()
Ejemplo n.º 5
0
def createProposals(mergedTracks, featSpat, cutOffLevel, xmax=np.inf, ymax=np.inf, regionSize=15):
    """create SingleTube proposals from the 'mergedTracks' clusters in trajectory clusters format"""

    # how many proposals
    nrProposals = mergedTracks.shape[0]
    # how many trajectory tracks
    nrTracks = featSpat.shape[0]

    zeroFound = True
    while zeroFound:
        # the list of tubes that will be created
        tubeLst = TubeList()
        # the list of tubes that will be sub-sampled
        selectedTubes = TubeList()

        # keep track of the nr of trajectories per merge
        nrTraj = np.zeros(nrProposals)
        nrTrajT1 = np.zeros(nrProposals)
        nrTrajT2 = np.zeros(nrProposals)

        for p in xrange(nrProposals):
            # clusterformat: a merged ID, and trackIDs t1 and t2
            [mergedID, t1, t2] = mergedTracks[p][0:3]

            if t1 < nrTracks:
                # if a trackID is lower than nrTracks it is a trajectory
                tube1 = traj2tube(featSpat[t1, 0], featSpat[t1, 1:], xmax, ymax, regionSize)
                nrT1 = 1

            else:
                # otherwise it is a previously merged proposal
                idx = int(t1) - nrTracks
                tube1 = tubeLst[idx]
                nrT1 = nrTraj[idx]

            if t2 < nrTracks:
                # if a trackID is lower than nrTracks it is a trajectory
                tube2 = traj2tube(featSpat[t2, 0], featSpat[t2, 1:], xmax, ymax, regionSize)
                nrT2 = 1
            else:
                # otherwise it is a previously merged proposal
                idx = int(t2) - nrTracks
                tube2 = tubeLst[idx]
                nrT2 = nrTraj[idx]

            # the nr of trajectories of this merge
            nrTraj[p] = nrT1 + nrT2
            nrTrajT1[p] = nrT1
            nrTrajT2[p] = nrT2

            # make a copy of t1 and merge it with t2
            newTube = tube1.copy()
            newTube.merge(tube2)
            tubeLst.append(newTube)

            # if to subsample, add to the selected list
            if nrT1 >= cutOffLevel and nrT2 >= cutOffLevel:
                selectedTubes.append(newTube)
        if len(selectedTubes) == 0:
            cutOffLevel = cutOffLevel / 2
            if cutOffLevel <= 0:
                return selectedTubes
        else:
            return selectedTubes
Ejemplo n.º 6
0
def main(doTubeFormat,
         inFileName,
         outTrajIDfileName,
         featPath,
         nrTrajThresh4Tube=0):

    tube2trajIDs.check()

    outPath = os.path.dirname(outTrajIDfileName)
    if not os.path.exists(outPath):
        os.makedirs(outPath)

    # read trajectory positions
    print '\tGet trajectory positions;',
    geoFeat = denseTraj.getFeatFromFileByName(featPath, 'geo')

    # if proposals are stored as Tubes already, read them
    if doTubeFormat:
        tubeProposals = TubeList()
        tubeProposals.readHDF5(inFileName)
        # initialize with a single name
        inHDF5fileClusts = ['tubes']
    else:
        print '\tGet video dimensions;',
        vidInfo = denseTraj.getFeatFromFileByName(featPath, 'vidinfo')
        xmax = vidInfo[1]
        ymax = vidInfo[2]
        # input cluster file
        inHDF5fileClusts = h5py.File(inFileName, 'r')

    # go over all features
    totNrProposals = 0
    for featName in inHDF5fileClusts:

        if not doTubeFormat:
            # get the clustered proposals for this feature type in SLINK pointer-representation
            dset = inHDF5fileClusts[featName]
            mergedTracks = dset[()]
            # convert pointer-representation to tube proposals
            if len(mergedTracks.shape) > 1 and mergedTracks.shape[0] > 1:
                tubeProposals = denseTraj.createProposals(
                    mergedTracks, geoFeat, nrTrajThresh4Tube, xmax, ymax)

        nrProposals = len(tubeProposals)
        print '\tFeature: "%s", number of proposals: %d;' % (featName,
                                                             nrProposals)

        # if ok
        if nrProposals > 0:
            # write as traj IDs

            if totNrProposals == 0:
                outHDF5file = h5py.File(outTrajIDfileName,
                                        'w',
                                        compression="gzip",
                                        compression_opts=9)

            for j in range(nrProposals):
                trajIDs = tubeProposals[j].tube2trajIDs(geoFeat)
                outHDF5file.create_dataset(str(totNrProposals), data=trajIDs)
                totNrProposals += 1

    print '\tWrite trajectory IDs to', outTrajIDfileName
    outHDF5file.close()