import numpy as np import matplotlib.pyplot as plt import database, query, tuple_gen import pprint import numpy as np import matplotlib.pyplot as plt result = database.query(query.signalstrength_scatter_over_day()) data = tuple_gen.group_by(result, 0) plt.figure(1) for key in data.keys(): #plt.subplot(3,2,axisNum) #plt.ylim(0,31) plt.title(key) x_ticks = tuple_gen.hour_minute_in_mins(data[key], 1, 2) y_vals = (tuple_gen.base_float(data[key], 3)) heatmap, xedges, yedges = np.histogram2d(y_vals, x_ticks, bins=(100, 100)) extent = [90, 100, 0, 100] #plt.clf() #fig.add_axes([0, 1, 0.5, 0.5]) plt.imshow(heatmap, extent=extent) plt.colorbar() plt.show() #plt.plot(x_ticks,y_vals)
import numpy as np import matplotlib.pyplot as plt import database,query,tuple_gen import pprint import numpy as np import matplotlib.pyplot as plt result = database.query(query.signalstrength_over_hour_of_day()) data = tuple_gen.group_by(result,0) plt.figure(1) # the first figure subplot_count = 511 for key in data.keys(): plt.subplot(subplot_count) #plt.ylim(0,31) plt.title(key) x_ticks = tuple_gen.hour_minute_period(data[key],1,2,10) y_vals = (tuple_gen.base_float(data[key],3)) plt.plot(x_ticks,y_vals) subplot_count+=1 plt.show()
import matplotlib.pyplot as plt import database, query, tuple_gen import pprint import numpy as np import matplotlib.pyplot as plt result = database.query(query.ping_over_time_finegrain()) data = tuple_gen.group_by(result, 0) plt.figure(1) # the first figure axisNum = 0 row = 0 col = 0 for key in data.keys(): data2 = tuple_gen.group_by(data[key], 1) list_keys = data2.keys() row += 1 col = 0 for key2 in sorted(list_keys): axisNum += 1 col += 1 ax = plt.subplot(len(data), len(data2), axisNum) if row == 1 : plt.title(key2) if col == 1 :