Ejemplo n.º 1
0
    def test_surface_sim_with_projections(self):

        # Setup Simulator obj
        oscillator = models.Generic2dOscillator()
        white_matter = connectivity.Connectivity.from_file('connectivity_%d.zip' % (self.n_regions,))
        white_matter.speed = numpy.array([self.speed])
        white_matter_coupling = coupling.Difference(a=self.coupling_a)
        heunint = integrators.HeunStochastic(
            dt=2 ** -4,
            noise=noise.Additive(nsig=numpy.array([2 ** -10, ]))
        )
        mons = (
            monitors.EEG.from_file(period=self.period),
            monitors.MEG.from_file(period=self.period),
            # monitors.iEEG.from_file(period=self.period),
            # SEEG projection data is not part of tvb-data on Pypi, thus this can not work generic
        )
        local_coupling_strength = numpy.array([2 ** -10])
        region_mapping = RegionMapping.from_file('regionMapping_16k_%d.txt' % (self.n_regions,))
        region_mapping.surface = CorticalSurface.from_file()
        default_cortex = Cortex.from_file()
        default_cortex.region_mapping_data = region_mapping
        default_cortex.coupling_strength = local_coupling_strength

        sim = simulator.Simulator(model=oscillator, connectivity=white_matter, coupling=white_matter_coupling,
                                  integrator=heunint, monitors=mons, surface=default_cortex)
        sim.configure()

        # check configured simulation connectivity attribute
        conn = sim.connectivity
        assert conn.number_of_regions == self.n_regions
        assert conn.speed == self.speed

        # test monitor properties
        lc_n_node = sim.surface.local_connectivity.matrix.shape[0]
        for mon in sim.monitors:
            assert mon.period == self.period
            n_sens, g_n_node = mon.gain.shape
            assert g_n_node == sim.number_of_nodes
            assert n_sens == mon.sensors.number_of_sensors
            assert lc_n_node == g_n_node

        # check output shape
        ys = {}
        mons = 'eeg meg seeg'.split()
        for key in mons:
            ys[key] = []
        for data in sim(simulation_length=3.0):
            for key, dat in zip(mons, data):
                if dat:
                    _, y = dat
                    ys[key].append(y)
        for mon, key in zip(sim.monitors, mons):
            ys[key] = numpy.array(ys[key])
            assert ys[key].shape[2] == mon.gain.shape[0]
Ejemplo n.º 2
0
    def configure(self,
                  dt=2**-3,
                  model=ModelsEnum.GENERIC_2D_OSCILLATOR.get_class(),
                  speed=4.0,
                  coupling_strength=0.00042,
                  method=HeunDeterministic,
                  surface_sim=False,
                  default_connectivity=True,
                  with_stimulus=False):
        """
        Create an instance of the Simulator class, by default use the
        generic plane oscillator local dynamic model and the deterministic 
        version of Heun's method for the numerical integration.
        
        """
        self.method = method

        if default_connectivity:
            white_matter = Connectivity.from_file()
            region_mapping = RegionMapping.from_file(
                source_file="regionMapping_16k_76.txt")
        else:
            white_matter = Connectivity.from_file(
                source_file="connectivity_192.zip")
            region_mapping = RegionMapping.from_file(
                source_file="regionMapping_16k_192.txt")
        region_mapping.surface = CorticalSurface.from_file()

        white_matter_coupling = coupling.Linear(
            a=numpy.array([coupling_strength]))
        white_matter.speed = numpy.array(
            [speed])  # no longer allow scalars to numpy array promotion

        dynamics = model()

        if issubclass(method, IntegratorStochastic):
            hisss = noise.Additive(nsig=numpy.array([2**-11]))
            integrator = method(dt=dt, noise=hisss)
        else:
            integrator = method(dt=dt)

        if surface_sim:
            local_coupling_strength = numpy.array([2**-10])
            default_cortex = Cortex.from_file()
            default_cortex.region_mapping_data = region_mapping
            default_cortex.coupling_strength = local_coupling_strength
            if default_connectivity:
                default_cortex.local_connectivity = LocalConnectivity.from_file(
                )
            else:
                default_cortex.local_connectivity = LocalConnectivity()
            default_cortex.local_connectivity.surface = default_cortex.region_mapping_data.surface
            # TODO stimulus
        else:
            default_cortex = None
            if with_stimulus:
                weights = StimuliRegion.get_default_weights(
                    white_matter.weights.shape[0])
                weights[self.stim_nodes] = 1.
                stimulus = StimuliRegion(temporal=Linear(parameters={
                    "a": 0.0,
                    "b": self.stim_value
                }),
                                         connectivity=white_matter,
                                         weight=weights)

        # Order of monitors determines order of returned values.
        self.sim = simulator.Simulator()
        self.sim.surface = default_cortex
        self.sim.model = dynamics
        self.sim.integrator = integrator
        self.sim.connectivity = white_matter
        self.sim.coupling = white_matter_coupling
        self.sim.monitors = self.monitors
        if with_stimulus:
            self.sim.stimulus = stimulus
        self.sim.configure()
Ejemplo n.º 3
0
 def from_tvb_file(self, filepath):
     self._tvb = TVBCorticalSurface.from_file(filepath, self._tvb)
     self.vox2ras = np.array([])
     self.file_path = filepath
     return self
Ejemplo n.º 4
0
    def configure(self,
                  dt=2**-3,
                  model=models.Generic2dOscillator,
                  speed=4.0,
                  coupling_strength=0.00042,
                  method=HeunDeterministic,
                  surface_sim=False,
                  default_connectivity=True):
        """
        Create an instance of the Simulator class, by default use the
        generic plane oscillator local dynamic model and the deterministic 
        version of Heun's method for the numerical integration.
        
        """
        self.method = method

        if default_connectivity:
            white_matter = Connectivity.from_file()
            region_mapping = RegionMapping.from_file(
                source_file="regionMapping_16k_76.txt")
        else:
            white_matter = Connectivity.from_file(
                source_file="connectivity_192.zip")
            region_mapping = RegionMapping.from_file(
                source_file="regionMapping_16k_192.txt")
        region_mapping.surface = CorticalSurface.from_file()

        white_matter_coupling = coupling.Linear(
            a=numpy.array([coupling_strength]))
        white_matter.speed = numpy.array(
            [speed])  # no longer allow scalars to numpy array promotion

        dynamics = model()

        if issubclass(method, IntegratorStochastic):
            hisss = noise.Additive(nsig=numpy.array([2**-11]))
            integrator = method(dt=dt, noise=hisss)
        else:
            integrator = method(dt=dt)

        if surface_sim:
            local_coupling_strength = numpy.array([2**-10])
            default_cortex = Cortex.from_file()
            default_cortex.region_mapping_data = region_mapping
            default_cortex.coupling_strength = local_coupling_strength
            if default_connectivity:
                default_cortex.local_connectivity = LocalConnectivity.from_file(
                )
            else:
                default_cortex.local_connectivity = LocalConnectivity()
            default_cortex.local_connectivity.surface = default_cortex.region_mapping_data.surface
        else:
            default_cortex = None

        # Order of monitors determines order of returned values.
        self.sim = simulator.Simulator()
        self.sim.surface = default_cortex
        self.sim.model = dynamics
        self.sim.integrator = integrator
        self.sim.connectivity = white_matter
        self.sim.coupling = white_matter_coupling
        self.sim.monitors = self.monitors
        self.sim.configure()