def __init__(self,
              model_name="vep_sde",
              model_config=ModelConfiguration(),
              parameters=[
                  XModes.X0MODE.value, "sigma_" + XModes.X0MODE.value,
                  "tau1", "K", "x1_init", "z_init", "dX1t", "dZt", "sigma",
                  "epsilon", "scale", "offset"
              ],
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value,
              sigma_x=None,
              sigma_x_scale=3,
              MC_direction_split=0.5,
              sigma_init=SIGMA_INIT_DEF,
              tau1=TAU1_DEF,
              tau0=TAU0_DEF,
              epsilon=EPSILON_DEF,
              sigma=SIGMA_DEF,
              scale=SCALE_SIGNAL_DEF,
              offset=OFFSET_SIGNAL_DEF,
              sde_mode=SDE_MODES.NONCENTERED.value,
              observation_model=OBSERVATION_MODELS.SEEG_LOGPOWER.value,
              number_of_signals=0,
              active_regions=[]):
     super(SDEProbabilisticModelBuilder,
           self).__init__(model_name, model_config, parameters, xmode,
                          priors_mode, sigma_x, sigma_x_scale,
                          MC_direction_split, sigma_init, tau1, tau0,
                          epsilon, scale, offset, observation_model,
                          number_of_signals, active_regions)
     self.sigma_init = sigma_init
     self.sde_mode = sde_mode
     self.sigma = sigma
Ejemplo n.º 2
0
 def __init__(self,
              name='vep_ode',
              number_of_regions=0,
              target_data_type=TARGET_DATA_TYPE.EMPIRICAL.value,
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value,
              parameters={},
              ground_truth={},
              model_config=ModelConfiguration(),
              observation_model=OBSERVATION_MODELS.SEEG_LOGPOWER.value,
              sigma_x=SIGMA_X0_DEF,
              sigma_init=SIGMA_INIT_DEF,
              sigma=SIGMA_DEF,
              tau1=TAU1_DEF,
              tau0=TAU0_DEF,
              scale=SCALE_SIGNAL_DEF,
              offset=OFFSET_SIGNAL_DEF,
              epsilon=EPSILON_DEF,
              number_of_target_data=0,
              time_length=0,
              dt=DT_DEF,
              active_regions=[],
              sde_mode=SDE_MODES.NONCENTERED.value):
     super(SDEProbabilisticModel,
           self).__init__(name, number_of_regions, target_data_type, xmode,
                          priors_mode, parameters, ground_truth,
                          model_config, observation_model, sigma_x,
                          sigma_init, tau1, tau0, scale, offset, epsilon,
                          number_of_target_data, time_length, dt,
                          active_regions)
     self.sigma = sigma
     self.sde_mode = sde_mode
 def configure_model_from_equilibrium(self, x1EQ, zEQ, connectivity_matrix):
     # x1EQ, zEQ = self._ensure_equilibrum(x1EQ, zEQ) # We don't this by default anymore
     x0, Ceq, x0_values, e_values = self._compute_params_after_equilibration(
         x1EQ, zEQ, connectivity_matrix)
     model_configuration = ModelConfiguration(
         self.yc, self.Iext1, self.Iext2, self.K, self.a, self.b, self.d,
         self.slope, self.s, self.gamma, x1EQ, zEQ, Ceq, x0, x0_values,
         e_values, self.zmode, connectivity_matrix)
     return model_configuration
Ejemplo n.º 4
0
 def _configure_model_from_equilibrium(self, x1eq, zeq, model_connectivity):
     # x1eq, zeq = self._ensure_equilibrum(x1eq, zeq) # We don't this by default anymore
     x0, Ceq, x0_values, e_values = self._compute_params_after_equilibration(
         x1eq, zeq, model_connectivity)
     return ModelConfiguration(self.yc, self.Iext1, self.Iext2, self.K,
                               self.a, self.b, self.d, self.slope, self.s,
                               self.gamma, self.tau1, self.tau0, x1eq, zeq,
                               Ceq, x0, x0_values, e_values, self.zmode,
                               model_connectivity)
Ejemplo n.º 5
0
    def test_write_model_configuration(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP, "TestModelConfiguration.h5")
        dummy_mc = ModelConfiguration(x1eq=numpy.array([2.0, 3.0, 1.0]), zmode=None,
                                      zeq=numpy.array([3.0, 2.0, 1.0]), Ceq=numpy.array([1.0, 2.0, 3.0]),
                                      model_connectivity=self.dummy_connectivity.normalized_weights)

        assert not os.path.exists(test_file)

        self.writer.write_model_configuration(dummy_mc, test_file)

        assert os.path.exists(test_file)
 def __init__(self,
              model_name="vep",
              model_config=ModelConfiguration(),
              parameters=[XModes.X0MODE.value],
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value):
     self.name = model_name
     self.model_config = model_config
     self.xmode = xmode
     self.parameters = parameters
     self.priors_mode = priors_mode
Ejemplo n.º 7
0
    def test_read_model_configuration(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP, "TestModelConfiguration.h5")
        dummy_mc = ModelConfiguration(x1EQ=numpy.array([2.0, 3.0, 1.0]), zmode=None, zEQ=numpy.array([3.0, 2.0, 1.0]),
                                      model_connectivity=numpy.array(
                                          [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [2.0, 2.0, 2.0]]),
                                      Ceq=numpy.array([1.0, 2.0, 3.0]))
        self.writer.write_model_configuration(dummy_mc, test_file)
        mc = self.reader.read_model_configuration(test_file)

        assert numpy.array_equal(dummy_mc.x1EQ, mc.x1EQ)
        assert numpy.array_equal(dummy_mc.zEQ, mc.zEQ)
        assert numpy.array_equal(dummy_mc.Ceq, mc.Ceq)
        assert numpy.array_equal(dummy_mc.model_connectivity, mc.model_connectivity)
Ejemplo n.º 8
0
    def __init__(self,
                 name='vep_ode',
                 number_of_regions=0,
                 target_data_type=TARGET_DATA_TYPE.EMPIRICAL.value,
                 xmode=XModes.X0MODE.value,
                 priors_mode=PriorsModes.NONINFORMATIVE.value,
                 parameters={},
                 ground_truth={},
                 model_config=ModelConfiguration(),
                 observation_model=OBSERVATION_MODELS.SEEG_LOGPOWER.value,
                 sigma_x=SIGMA_X0_DEF,
                 sigma_init=SIGMA_INIT_DEF,
                 tau1=TAU1_DEF,
                 tau0=TAU0_DEF,
                 scale=SCALE_SIGNAL_DEF,
                 offset=OFFSET_SIGNAL_DEF,
                 epsilon=EPSILON_DEF,
                 number_of_target_data=0,
                 time_length=0,
                 dt=DT_DEF,
                 active_regions=[]):
        super(ODEProbabilisticModel,
              self).__init__(name, number_of_regions, target_data_type, xmode,
                             priors_mode, parameters, ground_truth,
                             model_config, sigma_x)
        if np.all(np.in1d(active_regions, range(self.number_of_regions))):
            self.active_regions = np.unique(active_regions).tolist()
        else:
            raise_value_error("Active regions indices:\n" +
                              str(active_regions) +
                              "\nbeyond number of regions (" +
                              str(self.number_of_regions) + ")!")

        if observation_model in [_.value for _ in OBSERVATION_MODELS]:
            self.observation_model = observation_model
        else:
            raise_value_error("Statistical model's observation model " +
                              str(observation_model) +
                              " is not one of the valid ones: " +
                              str([_.value for _ in OBSERVATION_MODELS]) + "!")
        self.sigma_init = sigma_init
        self.tau1 = tau1
        self.tau0 = tau0
        self.scale = scale
        self.offset = offset
        self.epsilon = epsilon
        self.number_of_target_data = number_of_target_data
        self.time_length = time_length
        self.dt = dt
Ejemplo n.º 9
0
 def build_model_from_model_config_dict(self, model_config_dict):
     if not isinstance(model_config_dict, dict):
         model_config_dict = model_config_dict.__dict__
     model_configuration = ModelConfiguration()
     for attr, value in model_configuration.__dict__.iteritems():
         value = model_config_dict.get(attr, None)
         if value is None:
             warning(
                 attr +
                 " not found in the input model configuraiton dictionary!" +
                 "\nLeaving default " + attr + ": " +
                 str(getattr(model_configuration, attr)))
         if value is not None:
             setattr(model_configuration, attr, value)
     return model_configuration
Ejemplo n.º 10
0
    def test_write_model_inversion_service(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestModelInversionService.h5")
        dummy_model_inversion_service = ModelInversionService(
            ModelConfiguration(
                model_connectivity=self.dummy_connectivity.normalized_weights,
                x1EQ=X1_EQ_CR_DEF),
            dynamical_model="Epileptor",
            sig_eq=(-4.0 / 3.0 - -5.0 / 3.0) / 10.0)

        assert not os.path.exists(test_file)

        self.writer.write_model_inversion_service(
            dummy_model_inversion_service, test_file)

        assert os.path.exists(test_file)
Ejemplo n.º 11
0
 def __init__(self,
              name='vep',
              number_of_regions=0,
              target_data_type=TARGET_DATA_TYPE.EMPIRICAL.value,
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value,
              parameters={},
              ground_truth={},
              model_config=ModelConfiguration(),
              sigma_x=SIGMA_X0_DEF,
              MC_direction_split=0.5):
     self.name = name
     self.number_of_regions = number_of_regions
     self.xmode = xmode
     self.priors_mode = priors_mode
     self.sigma_x = sigma_x
     self.parameters = parameters
     self.model_config = model_config
     self.MC_direction_split = MC_direction_split
     self.ground_truth = ground_truth
     self.target_data_type = target_data_type
 def __init__(self,
              model_name="vep",
              model_config=ModelConfiguration(),
              parameters=[
                  XModes.X0MODE.value, "sigma_" + XModes.X0MODE.value, "K"
              ],
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value,
              sigma_x=None,
              sigma_x_scale=3,
              MC_direction_split=0.5):
     super(ProbabilisticModelBuilder,
           self).__init__(model_name, model_config, parameters, xmode,
                          priors_mode)
     if sigma_x is None:
         if self.xmode == XModes.X0MODE.value:
             self.sigma_x = SIGMA_X0_DEF
         else:
             self.sigma_x = SIGMA_EQ_DEF
     else:
         self.sigma_x = sigma_x
     self.sigma_x_scale = sigma_x_scale
     self.MC_direction_split = MC_direction_split
 def __init__(self,
              model_name="vep_ode",
              model_config=ModelConfiguration(),
              parameters=[
                  XModes.X0MODE.value, "sigma_" + XModes.X0MODE.value,
                  "tau1", "K", "x1_init", "z_init", "epsilon", "scale",
                  "offset"
              ],
              xmode=XModes.X0MODE.value,
              priors_mode=PriorsModes.NONINFORMATIVE.value,
              sigma_x=None,
              sigma_x_scale=3,
              MC_direction_split=0.5,
              sigma_init=SIGMA_INIT_DEF,
              tau1=TAU1_DEF,
              tau0=TAU0_DEF,
              epsilon=EPSILON_DEF,
              scale=SCALE_SIGNAL_DEF,
              offset=OFFSET_SIGNAL_DEF,
              observation_model=OBSERVATION_MODELS.SEEG_LOGPOWER.value,
              number_of_signals=0,
              active_regions=[]):
     super(ODEProbabilisticModelBuilder,
           self).__init__(model_name, model_config, parameters, xmode,
                          priors_mode, sigma_x, sigma_x_scale,
                          MC_direction_split)
     self.sigma_init = sigma_init
     self.tau1 = tau1
     self.tau0 = tau0
     self.epsilon = epsilon
     self.scale = scale
     self.offset = offset
     self.observation_model = observation_model
     self.number_of_signals = number_of_signals
     self.time_length = self.compute_seizure_length()
     self.dt = self.compute_dt()
     self.active_regions = active_regions
Ejemplo n.º 14
0
    def read_model_configuration(self, path):
        """
        :param path: Path towards a ModelConfiguration H5 file
        :return: ModelConfiguration object
        """
        self.logger.info("Starting to read ModelConfiguration from: %s" % path)
        h5_file = h5py.File(path, 'r', libver='latest')

        if h5_file.attrs["EPI_Subtype"] != "ModelConfiguration":
            self.logger.warning("This file does not seem to hold a ModelConfiguration")

        model_configuration = ModelConfiguration()
        for dataset in h5_file.keys():
            model_configuration.set_attribute(dataset, h5_file["/" + dataset][()])

        for attr in h5_file.attrs.keys():
            model_configuration.set_attribute(attr, h5_file.attrs[attr])

        h5_file.close()
        return model_configuration
class ProbabilisticModelBuilderBase(object):

    __metaclass__ = ABCMeta

    logger = initialize_logger(__name__)

    name = "vep"
    model_config = ModelConfiguration()
    parameters = [XModes.X0MODE.value]
    xmode = XModes.X0MODE.value
    priors_mode = PriorsModes.NONINFORMATIVE.value

    def __init__(self,
                 model_name="vep",
                 model_config=ModelConfiguration(),
                 parameters=[XModes.X0MODE.value],
                 xmode=XModes.X0MODE.value,
                 priors_mode=PriorsModes.NONINFORMATIVE.value):
        self.name = model_name
        self.model_config = model_config
        self.xmode = xmode
        self.parameters = parameters
        self.priors_mode = priors_mode

    def __repr__(self, d=OrderedDict()):
        return formal_repr(self, self._repr(d))

    def __str__(self):
        return self.__repr__()

    @property
    def number_of_regions(self):
        return self.model_config.number_of_regions

    @property
    def number_of_parameters(self):
        return len(self.parameters)

    def _repr(self, d=OrderedDict()):
        for ikey, (key, val) in enumerate(self.__dict__.iteritems()):
            d.update({str(ikey) + ". " + key: val})
        return d

    def set_attributes(self, attributes_names, attribute_values):
        for attribute_name, attribute_value in zip(
                ensure_list(attributes_names), ensure_list(attribute_values)):
            setattr(self, attribute_name, attribute_value)
        return self

    def _set_attributes_from_dict(self, attributes_dict):
        if not isinstance(attributes_dict, dict):
            attributes_dict = attributes_dict.__dict__
        for attr, value in attributes_dict.iteritems():
            if not attr in [
                    "model_config", "parameters", "number_of_regions",
                    "number_of_parameters"
            ]:
                value = attributes_dict.get(attr, None)
                if value is None:
                    warning(attr + " not found in input dictionary!" +
                            "\nLeaving as it is: " + attr + " = " +
                            str(getattr(self, attr)))
                if value is not None:
                    setattr(self, attr, value)
        return attributes_dict

    @abstractmethod
    def generate_parameters(self):
        pass

    @abstractmethod
    def generate_model(self):
        pass
class ProbabilisticModelBuilder(ProbabilisticModelBuilderBase):

    parameters = [XModes.X0MODE.value, "sigma_" + XModes.X0MODE.value, "K"]
    sigma_x = SIGMA_X0_DEF
    sigma_x_scale = 3
    MC_direction_split = 0.5
    model_config = ModelConfiguration()

    def __init__(self,
                 model_name="vep",
                 model_config=ModelConfiguration(),
                 parameters=[
                     XModes.X0MODE.value, "sigma_" + XModes.X0MODE.value, "K"
                 ],
                 xmode=XModes.X0MODE.value,
                 priors_mode=PriorsModes.NONINFORMATIVE.value,
                 sigma_x=None,
                 sigma_x_scale=3,
                 MC_direction_split=0.5):
        super(ProbabilisticModelBuilder,
              self).__init__(model_name, model_config, parameters, xmode,
                             priors_mode)
        if sigma_x is None:
            if self.xmode == XModes.X0MODE.value:
                self.sigma_x = SIGMA_X0_DEF
            else:
                self.sigma_x = SIGMA_EQ_DEF
        else:
            self.sigma_x = sigma_x
        self.sigma_x_scale = sigma_x_scale
        self.MC_direction_split = MC_direction_split

    def _repr(self, d=OrderedDict()):
        d.update(super(ProbabilisticModelBuilder, self)._repr(d))
        nKeys = len(d)
        for ikey, (key, val) in enumerate(self.__dict__.iteritems()):
            d.update({str(nKeys + ikey) + ". " + key: str(val)})
        return d

    def get_SC(self, model_connectivity):
        # Set symmetric connectivity to be in the interval [MC_MAX / MAX_MIN_RATIO, MC_MAX],
        # where self.MC_MAX corresponds to the 95th percentile of model_connectivity
        p95 = np.percentile(model_connectivity.flatten(), 95)
        SC = np.array(model_connectivity)
        if p95 != MC_MAX:
            SC = SC / p95
            SC[SC > MC_MAX] = 1.0
        mc_def_min = MC_MAX / MC_MAX_MIN_RATIO
        SC[SC < mc_def_min] = mc_def_min
        diag_ind = range(self.number_of_regions)
        SC[diag_ind, diag_ind] = 0.0
        return SC

    def get_MC_prior(self, model_connectivity):
        MC_def = self.get_SC(model_connectivity)
        inds = np.triu_indices(self.number_of_regions, 1)
        MC_def[inds] = MC_def[inds] * self.MC_direction_split
        MC_def = MC_def.T
        MC_def[inds] = MC_def[inds] * (1.0 - self.MC_direction_split)
        MC_def = MC_def.T
        MC_def[MC_def < 0.001] = 0.001
        return MC_def

    def generate_parameters(self):
        parameters = OrderedDict()
        self.logger.info("Generating model parameters by " +
                         self.__class__.__name__ + "...")
        # Generative model:
        # Epileptor stability:
        self.logger.info("..." + self.xmode + "...")
        if self.priors_mode == PriorsModes.INFORMATIVE.value:
            xprior = getattr(self.model_config, self.xmode)
            sigma_x = None
        else:
            xprior = x_def[self.xmode]["def"] * np.ones(
                (self.number_of_regions, ))
            sigma_x = self.sigma_x
        x_param_name = self.xmode
        parameters.update({
            self.xmode:
            generate_negative_lognormal_parameter(
                x_param_name,
                xprior,
                x_def[self.xmode]["min"],
                x_def[self.xmode]["max"],
                sigma=sigma_x,
                sigma_scale=self.sigma_x_scale,
                p_shape=(self.number_of_regions, ),
                use="scipy")
        })
        # Update sigma_x value and name
        self.sigma_x = parameters[self.xmode].std
        sigma_x_name = "sigma_" + self.xmode
        if sigma_x in self.parameters:
            self.logger.info("..." + sigma_x + "...")
            parameters.update({
                sigma_x:
                generate_lognormal_parameter(sigma_x_name,
                                             self.sigma_x,
                                             0.0,
                                             10 * self.sigma_x,
                                             sigma_scale=self.sigma_x,
                                             p_shape=(),
                                             use="scipy")
            })

        # Coupling
        if "MC" in self.parameters:
            self.logger.info("...MC...")
            parameters.update({
                "MC":
                generate_lognormal_parameter(
                    "MC",
                    self.get_MC_prior(self.model_config.model_connectivity),
                    MC_MIN,
                    MC_MAX,
                    sigma=None,
                    sigma_scale=MC_SCALE,
                    p_shape=(),
                    use="scipy")
            })

        if "K" in self.parameters:
            self.logger.info("...K...")
            parameters.update({
                "K":
                generate_lognormal_parameter("K",
                                             self.model_config.K,
                                             K_MIN,
                                             K_MAX,
                                             sigma=None,
                                             sigma_scale=K_SCALE,
                                             p_shape=(),
                                             use="scipy")
            })

        return parameters

    def generate_model(self,
                       target_data_type=TARGET_DATA_TYPE.SYNTHETIC.value,
                       ground_truth={}):
        tic = time.time()
        self.logger.info("Generating model by " + self.__class__.__name__ +
                         "...")
        parameters = self.generate_parameters()
        model = ProbabilisticModel(self.name, self.number_of_regions,
                                   target_data_type, self.xmode,
                                   self.priors_mode, parameters, ground_truth,
                                   self.model_config, self.sigma_x,
                                   self.MC_direction_split)
        self.logger.info(self.__class__.__name__ + " took " +
                         str(time.time() - tic) + ' sec for model generation')
        return model
Ejemplo n.º 17
0
class ProbabilisticModel(object):

    name = "vep"
    target_data_type = TARGET_DATA_TYPE.EMPIRICAL.value
    parameters = {}
    model_config = ModelConfiguration()
    xmode = XModes.X0MODE.value
    priors_mode = PriorsModes.NONINFORMATIVE.value
    sigma_x = SIGMA_X0_DEF
    MC_direction_split = 0.5
    ground_truth = {}

    @property
    def number_of_parameters(self):
        return len(self.parameters)

    def __init__(self,
                 name='vep',
                 number_of_regions=0,
                 target_data_type=TARGET_DATA_TYPE.EMPIRICAL.value,
                 xmode=XModes.X0MODE.value,
                 priors_mode=PriorsModes.NONINFORMATIVE.value,
                 parameters={},
                 ground_truth={},
                 model_config=ModelConfiguration(),
                 sigma_x=SIGMA_X0_DEF,
                 MC_direction_split=0.5):
        self.name = name
        self.number_of_regions = number_of_regions
        self.xmode = xmode
        self.priors_mode = priors_mode
        self.sigma_x = sigma_x
        self.parameters = parameters
        self.model_config = model_config
        self.MC_direction_split = MC_direction_split
        self.ground_truth = ground_truth
        self.target_data_type = target_data_type

    def _repr(self, d=OrderedDict()):
        for ikey, (key, val) in enumerate(self.__dict__.iteritems()):
            d.update({key: val})
        return d

    def __repr__(self, d=OrderedDict()):
        return formal_repr(self, self._repr(d))

    def __str__(self):
        return self.__repr__()

    @property
    def number_of_total_parameters(self):
        nparams = 0
        for p in self.parameters.values():
            nparams += np.maximum(1, np.prod(p.p_shape))
        return nparams

    def get_parameter(self, parameter_name):
        parameter = self.parameters.get(parameter_name, None)
        if parameter is None:
            warning("Ground truth value for parameter " + parameter_name +
                    " was not found!")
        return parameter

    def get_truth(self, parameter_name):
        if self.target_data_type == TARGET_DATA_TYPE.SYNTHETIC.value:
            truth = self.ground_truth.get(parameter_name, np.nan)
            if truth is np.nan:
                truth = getattr(self.model_config, parameter_name, np.nan)
                # TODO: find a more general solution here...
                if truth is np.nan and parameter_name == "MC" or parameter_name == "FC":
                    truth = self.model_config.model_connectivity
            if truth is np.nan:
                # TODO: decide if it is a good idea to return this kind of modeler's "truth"...
                truth = getattr(self, parameter_name, np.nan)
            if truth is np.nan:
                warning("Ground truth value for parameter " + parameter_name +
                        " was not found!")
            return truth
        return np.nan

    # Prior is either a parameter or the ground truth
    def get_prior(self, parameter_name):
        parameter = self.get_parameter(parameter_name)
        if parameter is None:
            # TODO: decide if it is a good idea to return this kind of modeler's fixed "prior"...
            return getattr(self, parameter_name, np.nan), None
        else:
            return parameter.mean, parameter

    def get_prior_pdf(self, parameter_name):
        mean_or_truth, parameter = self.get_prior(parameter_name)
        if isinstance(parameter, (ProbabilisticParameterBase,
                                  TransformedProbabilisticParameterBase)):
            return parameter.scipy_method("pdf")
        else:
            warning("No parameter " + parameter_name +
                    " was found!\nReturning true value instead of pdf!")
            return mean_or_truth