Ejemplo n.º 1
0
 def before():
     x = relay.var("x", shape=(1, 56, 56, 64))
     weight = relay.var("weight", shape=(3, 3, 64, 16))
     bias = relay.var("bias", shape=(1, 1, 1, 16))
     y = relay.nn.conv2d(
         x,
         weight,
         channels=16,
         kernel_size=(3, 3),
         padding=(1, 1),
         data_layout="NHWC",
         kernel_layout="HWIO",
     )
     y = relay.add(y, bias)
     mean = relay.mean(y, axis=3, exclude=True)
     var = relay.variance(y, axis=3, exclude=True)
     gamma = relay.var("gamma")
     beta = relay.var("beta")
     y = relay.nn.batch_norm(y, gamma, beta, mean, var, axis=3)
     y = y[0]
     y = relay.Function(analysis.free_vars(y), y)
     return y
Ejemplo n.º 2
0
 def expected():
     x = relay.var("x", shape=(1, 56, 56, 64))
     weight = relay.var("weight", shape=(3, 3, 64, 16))
     bias = relay.var("bias", shape=(1, 1, 1, 16))
     x = relay.layout_transform(x, src_layout="NHWC", dst_layout="NCHW")
     x = relay.layout_transform(x, src_layout="NCHW", dst_layout="NCHW16c")
     weight = relay.layout_transform(weight, src_layout="HWIO", dst_layout="OIHW")
     y = relay.nn.conv2d(
         x, weight, channels=16, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c"
     )
     bias = relay.layout_transform(bias, src_layout="NHWC", dst_layout="NCHW")
     bias = relay.layout_transform(bias, src_layout="NCHW", dst_layout="NCHW16c")
     add = relay.add(y, bias)
     y = relay.layout_transform(add, src_layout="NCHW16c", dst_layout="NCHW")
     y = relay.layout_transform(y, src_layout="NCHW", dst_layout="NHWC")
     mean = relay.mean(y, axis=3, exclude=True)
     var = relay.variance(y, axis=3, exclude=True)
     denom = relay.const(1.0) / relay.sqrt(var + relay.const(1e-05))
     gamma = relay.var("gamma", shape=(16,))
     denom = denom * gamma
     denom_expand1 = relay.expand_dims(denom, axis=1, num_newaxis=2)
     denom_expand2 = relay.expand_dims(denom_expand1, axis=0)
     denom_nchwc16 = relay.layout_transform(
         denom_expand2, src_layout="NCHW", dst_layout="NCHW16c"
     )
     out = add * denom_nchwc16
     beta = relay.var("beta", shape=(16,))
     numerator = (-mean) * denom + beta
     numerator_expand1 = relay.expand_dims(numerator, axis=1, num_newaxis=2)
     numerator_expand2 = relay.expand_dims(numerator_expand1, axis=0)
     numerator_nchwc16 = relay.layout_transform(
         numerator_expand2, src_layout="NCHW", dst_layout="NCHW16c"
     )
     out = out + numerator_nchwc16
     out = relay.layout_transform(out, src_layout="NCHW16c", dst_layout="NCHW")
     y = relay.layout_transform(out, src_layout="NCHW", dst_layout="NHWC")
     y = relay.Function(analysis.free_vars(y), y)
     return y
Ejemplo n.º 3
0
 def _unbiased_variance(x, axis=None, keepdims=False, exclude=False):
     return relay.variance(x, axis=axis, keepdims=keepdims, exclude=exclude, unbiased=True)