def main():
    args = get_args()
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    matches, probes = get_matches(args.lastz, args.splitchar, args.components,
                                  args.fish)
    #unique_matches = sum([1 for uce, map_pos in matches.iteritems() if len(map_pos) == probes[uce]])
    if args.fasta:
        tb = bx.seq.twobit.TwoBitFile(file(args.genome))
    count = 0
    for k, v in matches.iteritems():
        skip = False
        if len(v) > 1:
            if run_checks(k, v, probes):
                # sort by match position
                v_sort = sorted(v, key=itemgetter(2))
                start, end = v_sort[0][2], v_sort[-1][3]
                diff = end - start
                # ensure our range is less than N(probes) * probe_length - this
                # still gives us a little wiggle room because probes are ~ 2X tiled
                if diff > (probes[k] * 140):
                    skip = True
                    if args.verbose:
                        print "range longer than expected"
                else:
                    chromo = v[0][0]
                    strand = v[0][1]
            else:
                skip = True
        elif k in dupes:
            skip = True
            print "{0} is in dupefile".format(k)
        else:
            chromo, strand, start, end = v[0]
        if not skip and args.fasta:
            # slice out region + flank
            try:
                slc = tb[chromo][start - args.flank:end + args.flank]
            except:
                pdb.set_trace()
            # strip Ns from both ends
            slc = slc.strip('N')
            # reverse any strands where necessary
            if not strand == '+':
                slc = transform.DNA_reverse_complement(slc)
            if len(slc) != 0:
                args.fasta.write(">Node_{0}_length_{1}_cov_100\n{2}\n".format(
                    count, len(slc), '\n'.join(textwrap.wrap(slc))))
        if not skip and args.bed:
            args.bed.write("{0} {1} {2} {3} 1000 {4}\n".format(
                chromo, start - args.flank, end + args.flank, k, strand))
        count += 1
def main():
    args = get_args()
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    matches, probes = get_matches(args.lastz, args.splitchar, args.components, args.fish)
    #unique_matches = sum([1 for uce, map_pos in matches.iteritems() if len(map_pos) == probes[uce]])
    if args.fasta:
        tb = bx.seq.twobit.TwoBitFile(file(args.genome))
    count = 0
    for k,v in matches.iteritems():
        skip = False
        if len(v) > 1:
            if run_checks(k, v, probes):
                # sort by match position
                v_sort = sorted(v, key = itemgetter(2))
                start, end = v_sort[0][2], v_sort[-1][3]
                diff = end - start
                # ensure our range is less than N(probes) * probe_length - this
                # still gives us a little wiggle room because probes are ~ 2X tiled
                if diff > (probes[k] * 140):
                    skip = True
                    if args.verbose:
                        print "range longer than expected"
                else:
                    chromo = v[0][0]
                    strand = v[0][1]
            else:
                skip = True
        elif k in dupes:
            skip = True
            print "{0} is in dupefile".format(k)
        else:
            chromo, strand, start, end = v[0]
        if not skip and args.fasta:
            # slice out region + flank
            try:
                slc = tb[chromo][start - args.flank:end + args.flank]
            except:
                pdb.set_trace()
            # strip Ns from both ends
            slc = slc.strip('N')
            # reverse any strands where necessary
            if not strand == '+':
                slc = transform.DNA_reverse_complement(slc)
            if len(slc) != 0:
                args.fasta.write(">Node_{0}_length_{1}_cov_100\n{2}\n".format(count, len(slc), '\n'.join(textwrap.wrap(slc))))
        if not skip and args.bed:
            args.bed.write("{0} {1} {2} {3} 1000 {4}\n".format(chromo, start - args.flank, end + args.flank, k, strand))
        count += 1
def main():
    args = get_args()
    uces = set([
        get_name(read.identifier, "|", 1)
        for read in fasta.FastaReader(args.query)
    ])
    files = glob.glob(os.path.join(args.lastz, '*.lastz'))
    # this prob. needs to be more robust
    organisms = [
        os.path.splitext(os.path.basename(f).split('-')[-1])[0].replace(
            '-', "_") for f in files
    ]
    conn, c = create_match_database(args.db, organisms, uces)
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    #pdb.set_trace()
    for f in files:
        critter = os.path.splitext(os.path.basename(f).split('-')[-1])[0]
        matches, probes = get_matches(f, args.splitchar, args.components)
        count = 0
        for k, v in matches.iteritems():
            skip = False
            if len(v) > 1:
                if run_checks(k, v, probes, args.verbose):
                    # sort by match position
                    v_sort = sorted(v, key=itemgetter(2))
                    start, end = v_sort[0][2], v_sort[-1][3]
                    diff = end - start
                    # ensure our range is less than N(probes) * probe_length - this
                    # still gives us a little wiggle room because probes are ~ 2X tiled
                    if diff > (probes[k] * 120):
                        skip = True
                        if args.verbose:
                            print "range longer than expected"
                else:
                    skip = True
            elif args.dupefile and k in dupes:
                skip = True
                if args.verbose: print "{0} is in dupefile".format(k)
            else:
                pass
            if not skip:
                store_lastz_results_in_db(c, critter, k)
                count += 1
        print "Entered {} matches for {}".format(count, critter)
    conn.commit()
    c.close()
    conn.close()
def main():
    args = get_args()
    uces = set([get_name(read.identifier, "|", 1) for read in fasta.FastaReader(args.query)])
    files = glob.glob(os.path.join(args.lastz, '*.lastz'))
    # this prob. needs to be more robust
    organisms = [os.path.splitext(os.path.basename(f).split('-')[-1])[0].replace('-',"_") for f in files]
    conn, c = create_match_database(args.db, organisms, uces)
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    #pdb.set_trace()
    for f in files:
        critter = os.path.splitext(os.path.basename(f).split('-')[-1])[0]
        matches, probes = get_matches(f, args.splitchar, args.components)
        count = 0
        for k,v in matches.iteritems():
            skip = False
            if len(v) > 1:
                if run_checks(k, v, probes, args.verbose):
                    # sort by match position
                    v_sort = sorted(v, key = itemgetter(2))
                    start, end = v_sort[0][2], v_sort[-1][3]
                    diff = end - start
                    # ensure our range is less than N(probes) * probe_length - this
                    # still gives us a little wiggle room because probes are ~ 2X tiled
                    if diff > (probes[k] * 120):
                        skip = True
                        if args.verbose:
                            print "range longer than expected"
                else:
                    skip = True
            elif args.dupefile and k in dupes:
                skip = True
                if args.verbose:print "{0} is in dupefile".format(k)
            else:
                pass
            if not skip:
                store_lastz_results_in_db(c, critter, k)
                count += 1
        print "Entered {} matches for {}".format(count, critter)
    conn.commit()
    c.close()
    conn.close()
def main():
    args = get_args()
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    #pdb.set_trace()
    # get dbSNP data
    all_snps = get_xml_data(args.xml)
    used = set()
    # iterate over intersections
    args.output.write('rsid,pos,maf,1000g\n')
    for row in args.dbsnp:
        if not row.startswith('UCE'):
            uce, chromo, start, end, snp, snps, snpe = row.strip('\n').split(',')
            start, end, snps, snpe = map(int, [start, end, snps, snpe])
            # get relative position
            if not snpe - snps > 1 and snp not in used and not uce in dupes:
                middle = int(round((start + end)/2, 0))
                rel_snp_pos = snps - middle
                # lookup data for snps
                if all_snps[snp.strip('rs')].val_1000G and all_snps[snp.strip('rs')].val_1000G.lower() == 'true':
                    thousandg = True
                else:
                    thousandg = False
                if not all_snps[snp.strip('rs')].freq_freq:
                    freq = 0.0
                else:
                    freq = float(all_snps[snp.strip('rs')].freq_freq)
                args.output.write("{0},{1},{2},{3}\n".format(
                    snp, 
                    rel_snp_pos,
                    freq, 
                    thousandg
                    )
                )
                # make sure we skip any duplicates
                used.add(snp)
Ejemplo n.º 6
0
def main():
    args = get_args()
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    used = set()
    mx = max([int(row.strip('\n').split(',')[3]) \
            - int(row.strip('\n').split(',')[2]) \
            for row in open(args.dbsnp,'rU') if not row.startswith('UCE')])
    # get the SNP metadata
    all_snps = get_xml_data(args.xml)
    # find the middle
    overall_middle = int(round(mx / 2, 0))
    # list to hold results
    l = numpy.zeros(mx + 1)
    positions = copy.deepcopy(l)
    # create a dict to hold the results by position in longest array
    #differences = dict((d,numpy.array([])) for d in range(-middle, middle + 1))
    # iterate over intersections
    d = {}
    if args.output2:
        args.output2.write(
            'UCE,chromo,uce-start,uce-end,snp-name,snp-start,snp-end,1000gvalidated,freq\n'
        )
    for row in open(args.dbsnp, 'rU'):
        if not row.startswith('UCE'):
            uce, chromo, start, end, snp, snps, snpe = row.strip('\n').split(
                ',')
            start, end, snps, snpe = map(int, [start, end, snps, snpe])
            # get middle of this UCE
            middle = int(round((start + end) / 2, 0))
            #pdb.set_trace()
            if snp not in used:
                if not snpe - snps > 1 \
                    and (uce not in dupes) \
                    and all_snps[snp.strip('rs')].val_1000G == 'true' \
                    and all_snps[snp.strip('rs')].freq_freq is not None:
                    if not uce in d.keys():
                        d[uce] = numpy.zeros(mx + 1)
                    rel_snp_pos = snps - middle
                    d[uce][overall_middle +
                           rel_snp_pos] = all_snps[snp.strip('rs')].freq_freq
                if args.output2 and not snpe - snps > 1 and (
                        snp not in used) and (uce not in dupes):
                    args.output2.write("{},{},{},{},{},{},{},{},{}\n".format(
                        uce, chromo, start, end, snp, snps, snpe,
                        all_snps[snp.strip('rs')].val_1000G,
                        all_snps[snp.strip('rs')].freq_freq))
                used.add(snp)
    stack = numpy.array([d[uce] for uce in d.keys()])
    #pdb.set_trace()
    # compute the running average
    win = 25
    data = sum(stack > 0)
    weightings = numpy.repeat(1.0, win) / win
    running = numpy.convolve(data, weightings)[win - 1:-(win - 1)]
    args.output.write("pos,avg,ci,datatype\n")
    for base in range(len(running)):
        pos = base - overall_middle
        args.output.write("{},{},,running\n".format(pos, running[base]))
    # also output the average heterozygosity of 1000 Genome validated, hetero SNPs.
    for base in range(len(stack[0])):
        pos = base - overall_middle
        values = numpy.where(stack[:, base] != 0)[0]
        # reindex
        avg = numpy.mean(stack[:, base][values])
        ci = 1.96 * (numpy.std(stack[:, base][values], ddof=1) /
                     numpy.sqrt(len(stack[:, base][values])))
        args.output.write("{},{},{},mean_hetero\n".format(pos, avg, ci))
    win = 25
    data = numpy.mean(stack, axis=1)
    weightings = numpy.repeat(1.0, win) / win
    running = numpy.convolve(data, weightings)[win - 1:-(win - 1)]
    for base in range(len(stack[0])):
        pos = base - overall_middle
        args.output.write("{},{},,running_hetero\n".format(pos, running[base]))
def main():
    args = get_args()
    print get_dupes(args.lastz)
def main():
    args = get_args()
    print get_dupes(args.lastz)
def main():
    args = get_args()
    if args.dupefile:
        dupes = get_dupes(args.dupefile)
    else:
        dupes = None
    used = set()
    mx = max([int(row.strip('\n').split(',')[3]) \
            - int(row.strip('\n').split(',')[2]) \
            for row in open(args.dbsnp,'rU') if not row.startswith('UCE')])
    # get the SNP metadata
    all_snps = get_xml_data(args.xml)
    # find the middle
    overall_middle = int(round(mx/2, 0))
    # list to hold results 
    l = numpy.zeros(mx + 1)
    positions = copy.deepcopy(l)
    # create a dict to hold the results by position in longest array
    #differences = dict((d,numpy.array([])) for d in range(-middle, middle + 1))
    # iterate over intersections
    d = {}
    if args.output2:
        args.output2.write('UCE,chromo,uce-start,uce-end,snp-name,snp-start,snp-end,1000gvalidated,freq\n')
    for row in open(args.dbsnp, 'rU'):
        if not row.startswith('UCE'):
            uce, chromo, start, end, snp, snps, snpe = row.strip('\n').split(',')
            start, end, snps, snpe = map(int, [start, end, snps, snpe])
            # get middle of this UCE
            middle = int(round((start + end)/2, 0))
            #pdb.set_trace()
            if snp not in used:
                if not snpe - snps > 1 \
                    and (uce not in dupes) \
                    and all_snps[snp.strip('rs')].val_1000G == 'true' \
                    and all_snps[snp.strip('rs')].freq_freq is not None:
                    if not uce in d.keys():
                        d[uce] = numpy.zeros(mx + 1)
                    rel_snp_pos = snps - middle
                    d[uce][overall_middle + rel_snp_pos] = all_snps[snp.strip('rs')].freq_freq
                if args.output2 and not snpe - snps > 1 and (snp not in used) and (uce not in dupes):
                    args.output2.write("{},{},{},{},{},{},{},{},{}\n".format(
                        uce, chromo, start, end, snp, snps, 
                        snpe, all_snps[snp.strip('rs')].val_1000G, 
                        all_snps[snp.strip('rs')].freq_freq))
                used.add(snp)
    stack = numpy.array([d[uce] for uce in d.keys()])
    #pdb.set_trace()
    # compute the running average
    win = 25
    data = sum(stack > 0)
    weightings = numpy.repeat(1.0, win) / win
    running = numpy.convolve(data, weightings)[win-1:-(win-1)]
    args.output.write("pos,avg,ci,datatype\n")
    for base in range(len(running)):
        pos = base - overall_middle
        args.output.write("{},{},,running\n".format(pos,running[base]))
    # also output the average heterozygosity of 1000 Genome validated, hetero SNPs.
    for base in range(len(stack[0])):
        pos = base - overall_middle
        values = numpy.where(stack[:,base] != 0)[0]
        # reindex
        avg = numpy.mean(stack[:,base][values])
        ci = 1.96 * (numpy.std(stack[:,base][values], ddof = 1)/numpy.sqrt(len(stack[:,base][values])))
        args.output.write("{},{},{},mean_hetero\n".format(pos, avg, ci))
    win = 25
    data = numpy.mean(stack, axis = 1)
    weightings = numpy.repeat(1.0, win) / win
    running = numpy.convolve(data, weightings)[win-1:-(win-1)]
    for base in range(len(stack[0])):
        pos = base - overall_middle
        args.output.write("{},{},,running_hetero\n".format(pos,running[base]))