Ejemplo n.º 1
0
    def sample_lonlat(self, n):
        """
        Sample 2D distribution of points in lon, lat
        """
        # From http://en.wikipedia.org/wiki/Ellipse#General_parametric_form
        # However, Martin et al. (2009) use PA theta "from North to East"
        # Definition of phi (position angle) is offset by pi/4
        # Definition of t (eccentric anamoly) remains the same (x,y-frame usual)
        # In the end, everything is trouble because we use glon, glat...

        radius = self.sample_radius(n)
        a = radius
        b = self.jacobian * radius

        t = 2. * np.pi * numpy.random.rand(n)
        cost, sint = np.cos(t), np.sin(t)
        phi = np.pi / 2. - np.deg2rad(self.theta)
        cosphi, sinphi = np.cos(phi), np.sin(phi)
        x = a * cost * cosphi - b * sint * sinphi
        y = a * cost * sinphi + b * sint * cosphi

        if self.projector is None:
            logger.debug("Creating AITOFF projector for sampling")
            projector = Projector(self.lon, self.lat, 'ait')
        else:
            projector = self.projector
        lon, lat = projector.imageToSphere(x, y)
        return lon, lat
Ejemplo n.º 2
0
    def findObjects(pixels, values, nside, zvalues, rev, good):
        """
        Characterize labelled candidates in a multi-dimensional HEALPix map.
     
        Parameters:
        values    : (Sparse) HEALPix array of data values
        nside     : HEALPix dimensionality
        pixels    : Pixel values associated to (sparse) HEALPix array
        zvalues   : Values of the z-dimension (usually distance modulus)
        rev       : Reverse indices for pixels in each "island"
        good      : Array containg labels for each "island"
     
        Returns:
        objs      : numpy.recarray of object characteristics
        """

        ngood = len(good)
        objs = numpy.recarray((ngood, ),
                              dtype=[
                                  ('LABEL', 'i4'),
                                  ('NPIX', 'i4'),
                                  ('VAL_MAX', 'f4'),
                                  ('IDX_MAX', 'i4'),
                                  ('ZIDX_MAX', 'i4'),
                                  ('PIX_MAX', 'i4'),
                                  ('X_MAX', 'f4'),
                                  ('Y_MAX', 'f4'),
                                  ('Z_MAX', 'f4'),
                                  ('X_CENT', 'f4'),
                                  ('Y_CENT', 'f4'),
                                  ('Z_CENT', 'f4'),
                                  ('X_BARY', 'f4'),
                                  ('Y_BARY', 'f4'),
                                  ('Z_BARY', 'f4'),
                                  ('CUT', 'i2'),
                              ])
        objs['CUT'][:] = 0

        shape = values.shape
        ncol = shape[1]
        for i in range(0, ngood):
            logger.debug("i=%i", i)
            # This code could use some cleanup...
            indices = rev[rev[good[i]]:rev[good[i] + 1]]
            npix = len(indices)
            idx = indices // ncol  # This is the spatial index
            zidx = indices % ncol  # This is the distance index

            pix = pixels[idx]  # This is the healpix pixel
            xval, yval = pix2ang(nside, pix)
            zval = zvalues[zidx]

            objs[i]['LABEL'] = good[i]
            objs[i]['NPIX'] = npix
            logger.debug("LABEL=%i" % objs[i]['LABEL'])
            logger.debug("NPIX=%i" % objs[i]['NPIX'])

            island = values[idx, zidx]
            idxmax = island.argmax()
            xval_max, yval_max, zval_max = xval[idxmax], yval[idxmax], zval[
                idxmax]

            objs[i]['VAL_MAX'] = island[idxmax]
            objs[i]['IDX_MAX'] = idx[idxmax]
            objs[i]['ZIDX_MAX'] = zidx[idxmax]
            objs[i]['PIX_MAX'] = pix[idxmax]
            objs[i]['X_MAX'] = xval_max
            objs[i]['Y_MAX'] = yval_max
            objs[i]['Z_MAX'] = zval_max

            proj = Projector(xval_max, yval_max)
            xpix, ypix = proj.sphereToImage(xval, yval)

            # Projected centroid
            x_cent, y_cent, zval_cent = numpy.average([xpix, ypix, zval],
                                                      axis=1)
            xval_cent, yval_cent = proj.imageToSphere(x_cent, y_cent)
            objs[i]['X_CENT'] = xval_cent
            objs[i]['Y_CENT'] = yval_cent
            objs[i]['Z_CENT'] = zval_cent

            # Projected barycenter
            weights = [island, island, island]
            x_bary, y_bary, zval_bary = numpy.average([xpix, ypix, zval],
                                                      weights=weights,
                                                      axis=1)
            xval_bary, yval_bary = proj.imageToSphere(x_bary, y_bary)
            objs[i]['X_BARY'] = xval_bary
            objs[i]['Y_BARY'] = yval_bary
            objs[i]['Z_BARY'] = zval_bary

        return objs
Ejemplo n.º 3
0
 def projector(self):
     if self.proj is None or self.proj.lower() == 'none':
         return None
     else:
         return Projector(self.lon, self.lat, self.proj)
Ejemplo n.º 4
0
    def findObjects(pixels, values, nside, zvalues, rev, good):
        """
        Characterize labelled candidates in a multi-dimensional HEALPix map.
     
        Parameters:
        values    : (Sparse) HEALPix array of data values
        nside     : HEALPix dimensionality
        pixels    : Pixel values associated to (sparse) HEALPix array
        zvalues   : Values of the z-dimension (usually distance modulus)
        rev       : Reverse indices for pixels in each "island"
        good      : Array containg labels for each "island"
     
        Returns:
        objs      : numpy.recarray of object characteristics
        """
     
        ngood = len(good)
        objs = numpy.recarray((ngood,),
                           dtype=[('LABEL','i4'),
                                  ('NPIX','i4'),
                                  ('VAL_MAX','f4'),
                                  ('IDX_MAX','i4'),
                                  ('ZIDX_MAX','i4'),
                                  ('PIX_MAX','i4'),
                                  ('X_MAX','f4'),
                                  ('Y_MAX','f4'),
                                  ('Z_MAX','f4'),
                                  ('X_CENT','f4'),
                                  ('Y_CENT','f4'),
                                  ('Z_CENT','f4'),
                                  ('X_BARY','f4'),
                                  ('Y_BARY','f4'),
                                  ('Z_BARY','f4'),
                                  ('CUT','i2'),])
        objs['CUT'][:] = 0
     
        shape = values.shape
        ncol = shape[1]
        for i in range(0,ngood):
            logger.debug("i=%i",i)
            # This code could use some cleanup...
            indices=rev[rev[good[i]]:rev[good[i]+1]]
            npix = len(indices)
            idx = indices // ncol # This is the spatial index
            zidx = indices % ncol  # This is the distance index
     
            pix = pixels[idx] # This is the healpix pixel
            xval,yval = pix2ang(nside, pix)
            zval = zvalues[zidx]
            
            objs[i]['LABEL'] = good[i]
            objs[i]['NPIX'] = npix
            logger.debug("LABEL=%i"%objs[i]['LABEL'])
            logger.debug("NPIX=%i"%objs[i]['NPIX'])
     
            island = values[idx,zidx]
            idxmax = island.argmax()
            xval_max,yval_max,zval_max = xval[idxmax],yval[idxmax],zval[idxmax]
     
            objs[i]['VAL_MAX'] = island[idxmax]
            objs[i]['IDX_MAX']  = idx[idxmax]
            objs[i]['ZIDX_MAX']  = zidx[idxmax]
            objs[i]['PIX_MAX']   = pix[idxmax]
            objs[i]['X_MAX']  = xval_max
            objs[i]['Y_MAX']  = yval_max
            objs[i]['Z_MAX']  = zval_max

            proj = Projector(xval_max,yval_max)
            xpix,ypix = proj.sphereToImage(xval,yval)

            # Projected centroid
            x_cent,y_cent,zval_cent = numpy.average([xpix,ypix,zval],axis=1)
            xval_cent, yval_cent = proj.imageToSphere(x_cent,y_cent)
            objs[i]['X_CENT'] = xval_cent
            objs[i]['Y_CENT'] = yval_cent
            objs[i]['Z_CENT'] = zval_cent

            # Projected barycenter
            weights=[island,island,island]
            x_bary,y_bary,zval_bary = numpy.average([xpix,ypix,zval],weights=weights,axis=1)
            xval_bary,yval_bary = proj.imageToSphere(x_bary, y_bary)
            objs[i]['X_BARY'] = xval_bary
            objs[i]['Y_BARY'] = yval_bary
            objs[i]['Z_BARY'] = zval_bary
     
        return objs
Ejemplo n.º 5
0
 def projector(self):
     """Projector used to transform to local sky coordinates."""
     if self.proj is None or self.proj.lower() == 'none':
         return None
     else:
         return Projector(self.lon, self.lat, self.proj)